Refine Your Search

Topic

Search Results

Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

The New BAIC High Efficiency Turbocharged Engine with LPL-EGR

2017-10-08
2017-01-2414
The new Beijing Automotive Industry Corporation (BAIC) engine, an evolution of the 2.3L 4-cylinder turbocharged gasoline engine from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd. and Southwest Research Institute (SwRI®). The upgraded engine was intended to achieve low fuel consumption and a good balance of high performance and compliance with Euro 6 emissions regulations. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LPL-EGR) and dual independent cam phasers. Cooled LPL-EGR helped suppress engine knock and consequently allowed for increased compression ratio and improved thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped increase low-speed torque. Additionally, the intake and exhaust systems were improved along with optimization of the combustion chamber design.
Technical Paper

Factors Affecting Heat Transfer in a Diesel Engine: Low Heat Rejection Engine Revisited

2013-04-08
2013-01-0875
A large amount of the heat generated during the engine combustion process is lost to the coolant system through the surrounding metal parts. Therefore, there is a potential to improve the overall cycle efficiency by reducing the amount of heat transfer from the engine. In this paper, a Computational Fluid Dynamics (CFD) tool has been used to evaluate the effects of a number of design and operating variables on total heat loss from an engine to the coolant system. These parameters include injection characteristics and orientation, shape of the piston bowl, percentage of EGR and material property of the combustion chamber. Comprehensive analyses have been presented to show the efficient use of the heat retained in the combustion chamber and its contribution to improve thermal efficiency of the engine. Finally, changes in design and operating parameters have been suggested based on the analytical results to improve heat loss reduction from an engine.
Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Fuel Economy Benefits of Electric and Hydraulic Off Engine Accessories

2007-04-16
2007-01-0268
This paper will describe the fuel economy benefits that can be obtained when traditionally engine-driven accessories such as water pumps, oil pumps, power steering pumps, radiator cooling fans and air conditioning compressors are decoupled from the engine and are remotely driven and controlled. Simulation results for different vehicle configurations such as heavy duty trucks operated over urban and highway driving cycles and light duty vehicles such as mini vans will be presented. These results will quantify the heavy dependence of fuel economy benefits associated with different types of driving cycles.
Technical Paper

Accessory Electrification in Class 8 Tractors

2006-04-03
2006-01-0215
Fuel costs to operate large trucks have risen substantially in the last few years and, based on petroleum supply/demand curves, that trend is expected to continue for the foreseeable future. Non-propulsion or parasitic loads in a large truck account for a significant percentage of overall engine load, leading to reductions in overall vehicle fuel economy. Electrification of parasitic loads offers a way of minimizing non-propulsion engine loads, using the full motive force of the engine for propulsion and maximizing vehicle fuel economy. This paper covers the integration and testing of electrified accessories, powered by a fuel cell auxiliary power unit (APU) in a Class 8 tractor. It is a continuation of the efforts initially published in SAE paper 2005-01-0016.
Technical Paper

Electrification and Integration of Accessories on a Class-8 Tractor

2005-04-11
2005-01-0016
This paper describes installation and testing of electrified engine accessories and fuel cell auxiliary power units for a Class-8 tractor. A 2.4 kW fuel cell APU (Auxiliary Power Unit) has been added to supply a 42 V power supply for electrification of air conditioning and water pump systems. A 42/12 V dual alternator was used to replace the OEM alternator to provide safety back-up in case of fuel cell failure. A QNX Real Time Operating System-based (RTOS) Rapid Prototype Electronic Control System (RPECS™), developed by Southwest Research Institute (SwRI™), is used for supervisory control and coordination between accessories and engine. A Controller Area Network (CAN) interface, from the engine Electronic Control Unit (ECU), and the RS232 interface, from the fuel cell controllers, provide system data and control for RPECS. Custom wiring to the hydrogen, water pump, and air conditioning systems also provide data to RPECS. The water pump system controller is autonomous.
Technical Paper

Operability and Compatibility Characteristics of Advanced Technology Diesel Fuels: Pump Evaluations

2002-05-06
2002-01-1675
Two different laboratory fuel-injection-pump durability-tests were conducted with four advanced technology test fuels. The first test used a relatively low pressure rotary, opposed piston fuel injection pump similar to those used on some current North American engines. The second test used a relatively high pressure common rail injection pump such as those used currently on some European engines. The tests were scheduled to operate for 500 hours under severe load conditions. It can be concluded that the common-rail, high-pressure fuel pump is more sensitive to the advanced fuels than is the rotary pump in this severe duty-cycle test. Although the laboratory high frequency reciprocating rig (HFRR) tests were able to distinguish between those fuels that contained lubricity additives and those that did not, there was little correlation with pump durability results.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

CO2 Pump for the Space Station Advanced Atmosphere Revitalization Subsystem

2001-07-09
2001-01-2418
The current operation of the International Space Station (ISS) calls for the oxygen used by the occupants to be vented overboard in the form of CO2, after the CO2 is scrubbed from the cabin air. Likewise, H2 produced via electrolysis in the oxygen generator is also vented. NASA is investigating the use of the Sabatier process to combine these two product streams to form water and methane. The water is then used in the oxygen generator, thereby conserving this valuable resource. One of the technical challenges to developing the Sabatier reactor is transferring CO2 from the Carbon Dioxide Removal Assembly (CDRA) to the Sabatier reactor at the required rate, even though the CDRA and the Sabatier reactor operate on different schedules. One possible way to transfer and store CO2 is to use a mechanical compressor and a storage tank.
Technical Paper

Parasitic Loss Reduction for 21st Century Trucks

2000-12-04
2000-01-3423
To reach its objective of reducing vehicle fuel consumption by 50 percent, the development of the 21st Century Truck (21T) will address all the aspects of truck design contributing to the achievement of that goal. [1] This paper will address one of these aspects, specifically vehicle parasitic loss reduction with special emphasis on drive train losses, concentrating on the potential benefits of replacing mechanical coolant (water) and oil pumps with electrically powered pumps.
Technical Paper

Fuel Lubricity: Statistical Analysis of Literature Data

2000-06-19
2000-01-1917
A number of laboratory-scale test methods are available to predict the effects of fuel lubricity on injection system wear. Anecdotal evidence exists to indicate that these methods produce poor correlation with pump wear, particularly for fuels that contain lubricity additives. The issue is further complicated by variations in the lubricity requirements of full-scale equipment and the test methodologies used to evaluate the pumps. However, the cost of performing full-scale equipment testing severely limits the quantity of data available for validation of the laboratory procedures at any single location. In the present study, the technical literature was reviewed and all previously published data was combined to form a single database of 175 pump stand results. This volume of data allows far more accurate statistical analysis than is possible with tests performed at a single location. The results indicate differences in the effectiveness of the standardized laboratory-scale methods.
Technical Paper

An Overview of Current Automatic, Manual and Continuously Variable Transmission Efficiencies and Their Projected Future Improvements

1999-03-01
1999-01-1259
This paper will overview current production manual, automatic, and continuously variable transmission (CVT) efficiencies and efficiency variations across the industry. For automatic transmissions, efficiencies associated with the pump and the gearbox components will be highlighted along with areas for improvements. Efficiencies associated with various types of pumps such as internal-external, gerotor, hypocycloidal, and variable displacement will be compared. For CVT's a comparison of efficiencies for belt type and toroidal types will be provided, along with an examination of external-external and variable displacement type ball pumps.
Technical Paper

Filtration Requirements and Evaluation Procedure for a Rotary Injection Fuel Pump

1997-10-01
972872
A cooperative research and development program was organized to determine the critical particle size of abrasive debris that will cause significant wear in rotary injection fuel pumps. Various double-cut test dusts ranging from 0-5 to 10-20 μm were evaluated to determine which caused the pumps to fail. With the exception of the 0-5-μm test dust, all other test dust ranges evaluated caused failure in the rotary injection pumps. After preliminary testing, it was agreed that the 4-8-μm test dust would be used for further testing. Analysis revealed that the critical particle size causing significant wear is 6-7 μm. This is a smaller abrasive particle size than reported in previously published literature. A rotary injection pump evaluation methodology was developed. During actual operation, the fuel injection process creates a shock wave that propagates back up the fuel line to the fuel filter.
Technical Paper

Contamination Sensitivity of Automotive Components

1997-02-24
970552
System contamination caused by contaminates or small particles built-in, self-generated, or inhaled from environment presents severe problems. The problems include but are not limited to the malfunctioning of valves, pumps, seals and injectors or lock-up of these components; increased wear of bearings, piston rings, and other friction components; and degradated machine performance. In general, system contamination changes a deterministic system into a stochastic system and shortens machinery service life. In this paper, these contamination problems are discussed in categories and associated analysis, testing and computer modeling methodologies are also discussed.
Technical Paper

Proposed Efficiency Rating for an Optimized Automatic Transmission

1996-02-01
960425
Increased concern for improving fuel mileage in today's vehicles has focused attention on powertrain component efficiencies. Currently, no efficiency standards exist for automatic transmissions but, uniform testing procedures do exist. Consequently, vehicle and transmission manufacturers have no basis for comparing transmission-to-transmission performance. In addition, manufacturers have no design targets from which to critique their product. This paper addresses this issue by developing an overall transmission efficiency rating. This rating is based upon average transmission operational torques and speeds, the percent time of operation in each gear for a representative duty cycle, and representative efficiencies at these conditions based on test data obtained from a cross section of current production transmissions.
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
X