Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Fuel Reforming and Catalyst Deactivation Investigated in Real Exhaust Environment

2019-04-02
2019-01-0315
Increased in-cylinder hydrogen levels have been shown to improve burn durations, combustion stability, HC emissions and knock resistance which can directly translate into enhanced engine efficiency. External fuel reformation can also be used to increase the hydrogen yield. During the High-Efficiency, Dilute Gasoline Engine (HEDGE) consortium at Southwest Research Institute (SwRI), the potential of increased hydrogen production in a dedicated-exhaust gas recirculation (D-EGR) engine was evaluated exploiting the water gas shift (WGS) and steam reformation (SR) reactions. It was found that neither approach could produce sustained hydrogen enrichment in a real exhaust environment, even while utilizing a lean-rich switching regeneration strategy. Platinum group metal (PGM) and Ni WGS catalysts were tested with a focus on hydrogen production and catalyst durability.
Technical Paper

Achieving Fast Catalyst Light-Off from a Heavy-Duty Stoichiometric Natural Gas Engine Capable of 0.02 g/bhp-hr NOX Emissions

2018-04-03
2018-01-1136
Recently conducted work has been funded by the California Air Resources Board (CARB) to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions for heavy-duty on-road engines. In addition to NOX emissions, greenhouse gas (GHG), CO2 and methane emissions regulations from heavy-duty engines are also becoming more stringent. To achieve low cold-start NOX and methane emissions, the exhaust aftertreatment must be brought up to temperature quickly while keeping proper air-fuel ratio control; however, a balance between catalyst light-off and fuel penalty must be addressed to meet future CO2 emissions regulations. This paper details the work executed to improve catalyst light-off for a natural gas engine with a close-coupled and an underfloor three-way-catalyst while meeting an FTP NOX emission target of 0.02 g/bhp-hr and minimizing any fuel penalty.
Technical Paper

Real Fuel Effects on Low Speed Pre-Ignition

2018-04-03
2018-01-1456
To better understand real fuel effects on LSPI, a matrix was developed to vary certain chemical and physical properties of gasoline. The primary focus of the study was the impact of paraffinic, olefinic, and aromatic components upon LSPI. Secondary goals of this testing were to study the impact of ethanol content and fuel volatility as defined by the T90 temperature. The LSPI rate increased with ethanol content but was insensitive to olefin content. Additionally, increased aromatic content uniformly led to increased LSPI rates. For all blends, lower T90 temperatures resulted in decreased LSPI activity. The correlation between fuel octane (as RON or MON) suggests that octane itself does not play a role; however, the sensitivity of the fuel (RON-MON) does have some correlation with LSPI. Finally, the results of this analysis show that there is no correlation between the laminar flame speed of a fuel and the LSPI rate.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

2013-10-14
2013-01-2699
Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.
Technical Paper

Effects of Catalyst Formulation on Vehicle Emissions With Respect to Gasoline Fuel Sulfur Level

1999-10-25
1999-01-3675
Proposed emissions standards will require that emissions control systems function at extremely high efficiency. Recently, studies have shown that elevated gasoline fuel sulfur levels (GFSL) can impair catalytic converter efficiency. In this study, a variety of tri-metal catalysts were evaluated to determine if formulation changes could reduce emissions sensitivity to GFSL. Catalysts with elemental composition similar to an OEM, but with double the precious metal (PM) loading, were evaluated using 38 and 620 ppm GFSL. Doubling the PM loading significantly reduced catalyst sensitivity to sulfur. Doubling the rhodium loading, at the expense of the platinum loading, significantly improved NOx emission sulfur sensitivity.
X