Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

On the Advanced Air-Path Control and Estimation for Multiple and Alternative Combustion Mode Engines

2008-06-23
2008-01-1730
Alternative combustion modes such as homogeneous charge compression ignition (HCCI) and low temperature combustion (LTC) have shown very promising engine-out emissions. However, these combustion modes are close to the combustion stability boundaries and very sensitive to in-cylinder condition variations. Thus, transient control of engines operating in alternative combustion modes are very challenging compared with control of engines with conventional combustion mode only. This paper presents some advanced air-path control and estimation techniques/practice for multiple and alternative combustion mode engine transient operation. Based on the mean-value engine dynamic models, robust controllers can be designed to track the desired air-path performance variables to ensure desirable combustion during transient operation.
Journal Article

Smooth In-Cylinder Lean-Rich Combustion Switching Control for Diesel Engine Exhaust-Treatment System Regenerations

2008-04-14
2008-01-0979
This paper describes an in-cylinder lean-rich combustion (no-post-injection for rich) switching control approach for modern diesel engines equipped with exhaust-treatment systems. No-post-injection rich combustion is desirable for regeneration of engine exhaust-treatment systems thanks to its less fuel penalty compared with regeneration approaches using post-injections and / or in-exhaust injections. However, for vehicle applications, it is desirable to have driver-transparent exhaust-treatment system regenerations, which challenge the in-cylinder rich-lean combustion transitions. In this paper, a nonlinear in-cylinder condition control system combined with in-cylinder condition guided fueling control functions were developed to achieve smooth in-cylinder lean-rich switching control at both steady-state and transient operation. The performance of the control system is evaluated on a modern light-duty diesel engine (G9T600).
Technical Paper

Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles

2007-07-23
2007-01-1937
A new diesel engine system adopting alternative combustion with rich and near rich combustion, and an airflow-dominant control system for precise combustion control was used with a 4-way catalyst system with LNT (lean NOx trap) to achieve Tier II Bin 5 on a 2.2L TDI diesel engine. The study included catalyst temperature control, NOx regeneration, desulfation, and PM oxidation with and without post injection. Using a mass-produced lean burn gasoline LNT with 60,000 mile equivalent aging, compliance to Tier II Bin 5 emissions was confirmed for the US06 and FTP75 test cycles with low NVH, minor fuel penalty and smooth transient operation.
Technical Paper

AN AIRFLOW-DOMINANT CONTROL SYSTEM FOR FUTURE DIESEL ENGINES

2007-07-23
2007-01-2070
An airflow-dominant control system was developed to provide precise engine and exhaust treatment control with low air fuel ratio alternative combustion. The main elements of the control logic include a real-time state observer for in-cylinder oxygen mass estimation, a simplified packaging scheme for all air-handling and fueling parameters, a finite state machine for control mode switching, combustion control models to maintain robust alternative combustion during transients, and smooth rich/lean switching during lean NOx trap (LNT) regeneration without post injection. The control logic was evaluated on a passenger car equipped with a 4-way catalyst system with LNT and was instrumental in achieving US Tier II Bin 5 emission targets with good drivability and low NVH.
Technical Paper

Hybrid Robust Control for Engines Running Low Temperature Combustion and Conventional Diesel Combustion Modes

2007-04-16
2007-01-0770
This paper describes a hybrid robust nonlinear control approach for modern diesel engines running low temperature combustion and conventional diesel combustion modes. Using alternative combustion modes has become a promising approach to reduce engine emissions. However, due to very different in-cylinder conditions and fueling parameters for different combustion modes, control of engines operating multiple combustion modes is very challenging. It becomes difficult for conventional calibration / mapping based approaches to produce satisfactory results in terms of engine torque responses and emissions. Advanced control techniques are then demanded to accomplish the tasks. An innovative hybrid control system is designed to track different key engine operating variables at different combustion modes as well as avoid singularity which is inherent for turbocharged diesel engines running multiple combustion modes.
Technical Paper

Engine Crankshaft Position Tracking Algorithms Applicable for Given Arbitrary Cam- and Crank-Shaft Position Signal Patterns

2007-04-16
2007-01-1597
This paper describes algorithms that can recognize and track the engine crankshaft position for arbitrary cam- and crank-shaft tooth wheel patterns in both steady-state and transient operating conditions. Crankshaft position tracking resolution is adjustable to accommodate different application requirements. The instantaneous crankshaft position information provided by the position tracking module form the basis for crankshaft angle domain (CAD) engine control and measurement functions such as precise injection / ignition controls and on-line cylinder pressure CAD analyses. The algorithms described make reconfiguration of the tracking module for different and arbitrary cam- and crank-shaft tooth wheel patterns very easy, which is valuable especially for prototyping engine control systems. The effectiveness of the algorithms is shown using test engines with different cam and crank signal patterns.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

2006-04-03
2006-01-0054
This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

Effects of Engine Operating Conditions on In-Cylinder Air/Fuel Ratio Detection Using a Production Ion Sensing Device

2004-03-08
2004-01-0515
In-cylinder ion sensing through sparkplug electrodes can be used to determine in-cylinder A/F ratio by using a modified production coil-on-plug ignition system having ion sensing capability. The in-cylinder ionization can be characterized by the height of the peak, location of the peak from ignition command and area under the ionization signal curve. The effects of A/F ratio on the in-cylinder ionization can be isolated from other affecting factors by conducting tests on a constant volume combustion device in which the initial pressure and temperature can be well controlled. This results in a parabolic correlation of the ionization characteristics with the mixture equivalence ratio. Additionally the ionization characteristics show strong dependence on engine load and speed. Equivalence ratio characteristics during engine cranking and warm up are investigated, and a method for on-line calibration of ionization detection is discussed.
X