Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Vehicle Automatic Lane Changing based on Model Predictive Control

2016-04-05
2016-01-0142
In this paper, we present a model predictive controller for the autonomous vehicle lane-change maneuver. Firstly, an optimal trajectory is generated by polynomial, then, utilize it as the reference trajectory of the controller. It is well known that vehicle with nonholonomic constraints can not be feedback stabilized through continuously differentiable, time-invariant control laws. One of the advantages of MPC is the ability to handle constraints in a straightforward way. Quadratic programming is used to solve a linear MPC by successive linearization of an error model of the vehicle. Due to that the vehicle dynamics model is used, in order to prevent optimal solution cannot be obtained within the prescribed time, the relaxation factor in the objective function.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Technical Paper

Studies on Brake Pedal Feeling Based on a Novel Mechatronic Booster

2016-04-05
2016-01-0014
Nowadays, the vehicle market puts forward urgent requirement for new kinds of braking booster because the traditional vacuum booster cannot meet the demands of new energy vehicles anymore. However, one problem that all the new plans should face is how to guarantee an ideal pedal feeling. In this paper, a novel mechatronics braking booster is proposed, and servo motor introduced into the booster makes the assist rate can be adjusted under a great degrees of freedom, so the structural parameters and control parameters of the booster should be determined elaborately to get an optimal pedal feeling. The pedal feeling is always represented by the pedal stoke-force curve which is influenced by different parameters.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Technical Paper

MPC-Based Trajectory Tracking Control for Intelligent Vehicles

2016-04-05
2016-01-0452
In this paper, a model predictive control (MPC) based trajectory tracking scheme utilizing steering wheel and braking or acceleration pedal is proposed for intelligent vehicles. The control objective is to track a desired trajectory which is obtained from the trajectory planner. The proposed control is based on a simplified third-order vehicle model, which consists of longitudinal vehicle dynamics along with a commonly used bicycle model. A nonlinear model predictive control (NMPC) is adopted in order to follow a given path by controlling front steering, braking and traction, while fulfilling various physical and design constraints. In order to reduce the computational burden, the NMPC is converted to a linear time-varying (LTV) MPC based on successive online linearization of the nonlinear system model. Two different test conditions have been used to verify the effectiveness of the proposed approaches through simulations using Matlab and CarSim.
Journal Article

Power Assisted Braking Control Based on a Novel Mechatronic Booster

2016-04-05
2016-01-1644
This paper presents a power assisted braking control based on a novel mechatronic booster system. A brake pedal feel control unit is first discussed which includes a pedal emulator with an angular sensor to detect driver’s pedal travel, a signal processing module with a Kalman filter for sensor signal conditioning, and a driver braking intention detection and behavior recognition module based on the displacement and velocity of the pedal travel. A power assisted braking control is then presented as the core of the system which consists of controls on basic power assist, velocity compensation and friction compensation. The friction is estimated based on a generic algorithm offline. A motor controller is designed to provide the desired torque for the power assist. Finally, a novel mechatronic booster system is designed and built with an experimental platform set up with a widely adopted rapid prototype system using dSPACE products, such as MicroAutoBox, RapidPro, etc.
X