Refine Your Search

Topic

Author

Search Results

Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Review of the Computer Science and Engineering Solutions for Model Sharing and Model Co-Simulation

2019-03-19
2019-01-1352
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. One common example is sharing aircraft engine models with airframers. The functionality of a given model may be utilized and shared with a secondary model, or multiple models may run collaboratively through co-simulation. There are many technical challenges associated with model sharing and co-simulation. For example, data communication between models and tools must be accurate and reliable, and the model usage must be well-documented and perspicuous for a user. This requires clear communication and understanding between computer scientists and engineers. Most often, models are developed by engineers, whereas the tools used to share the models are developed by computer scientists.
Journal Article

Investigation and Analysis of Wear in a 3.6L V6 Gasoline Engine: Phase I - Use of Radioactive Tracer Technology

2017-03-28
2017-01-0800
Piston ring and liner wear measurements and analyses were performed in a production 3.6L V6 gasoline engine with radiolabelled engine parts. Three isotopes were generated: one in the engine liner using surface layer activation; one each in the top ring face and top ring side using bulk activation. Real-time wear measurements and subsequent rates of these three surfaces were captured using the radioactive decay of the isotopes into the engine oiling system. In addition, surface roughness and wear profile measurements were carried out using white light interferometry. The results from Phase I provided insights on evolution of wear and wear rates in critical engine components in a gasoline engine. Phase II will extend this work further and focus on evaluating the fuel additive effects on engine wear.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
Journal Article

Test Protocols for Motorcoach Fire Safety

2015-04-14
2015-01-1381
The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis. Test fixtures were designed and fabricated to simulate a representative engine compartment and wheel well.
Technical Paper

Method for Predicting Erosion Due to Cavitation of Outboard-Motor

2014-11-11
2014-32-0054
When the planing craft with outboard motor is running, cavitation occurs around the surface of propeller and lower unit of outboard motor. Cavitation has been classified under several categories by the feature and cause of occurrence. Among them, cloud cavitation and root cavitation lead to erosion damage on the surface of lower unit and propeller. To prevent from poor appearance or performance deterioration of outboard motor by erosion damage, it is important problem to predict the erosion occurrence. Currently we can predict the cavitation phenomena sufficiently, but the area of cavitation does not necessarily correspond with the area of erosion. In this study, we present the new method to predict the area of erosion due to cavitation using CFD (computer fluid dynamics) analysis. In order to evaluate the accuracy of erosion occurrence simulation, the simulation results are compared against the result of a full-scale cruising test.
Technical Paper

Evaluation of the Tribological Property of Resin Coating by the Addition of Nylon and Graphite Particles

2012-10-23
2012-32-0090
A resin coating was applied to a piston skirt for use in an internal combustion engine to reduce the frictional resistance on its surface. The purpose of the authors' study was to observe the change in surface states with the addition of nylon and graphite to the coating as solid lubricant particles in order to investigate the tribological properties of the surface. The authors observed self-formed microdimples on the resin surface when nylon particles were added to the polyamide-imide (PAI) coating material. These microdimples functioned as oil reservoirs similar in size to the nylon particles. The authors used PAI as a binder, and graphite particles (5 μm) and two different grades (5 and 10 μm) of nylon-12 particles as additives. These materials were mixed in a solvent, and an aluminum test sample was coated. The test sample was then heated in an oven to cure the PAI. Next, the texture of the surface was observed.
Video

Overview of Southwest Research Institute Activities in Engine Technology R&D

2012-05-10
This presentation will cover an overview of challenges and key discussion points for advanced electric motor and drive testing . Voiko will visit some examples of how D&V approaches these issues and also some suggestions for how the industry can view these intriguing problems as opportunities. The presentation will also delve into current testing developments that involve resolver, load bank and power measurement devices by highlighting solutions in the market today. There will also be a cursory look into the future of electric motor testing and what we can expect in the near term. Presenter Voiko Loukanov, D&V Electronics Limited
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Technical Paper

INTRODUCTION OF COMPUTER SIMULATION TECHNOLOGY FOR ELECTRODEPOSITION PAINTING PROCESS

2011-11-08
2011-32-0639
The electrodeposition painting can make a coat adhere not only to the exterior surface but also on the inside of an object, and has excellent corrosion resistance. Therefore, it is widely used as paint for anti-corrosion to various vehicles. In electrodeposition painting, by the electricity from an electrode flowing into the surface of an object through paint solution, a paint deposits to the surface of an object and a paint film is formed. Therefore, if the object is simply in contact with paint solution, a paint film will not necessarily be formed. For example, even if paint solution has touched, since the electrical resistance of paint solution is not high, sufficient current flows through the outside of a motorcycle frame, nor the inner surface of the automobile body and a paint film may not be formed. In order to check the paint film thickness of electrodeposition painting conventionally, it was measuring by disassembling the actually painted object.
Technical Paper

Development of lead-free crankshaft for motorcycle

2011-11-08
2011-32-0649
Lead-added free-cutting steel has been used by many parts which need high machinability because lead improves chip friability and drill life. However, the demand of lead reduction increases in recent years, because of environmental impact substance reduction. Therefore, we developed lead-free crankshaft for motorcycle. Until now, crankshaft for motorcycle has been manufactured with lead-added free-cutting steel by a following process; Hot-Forging - Quenching and Tempering (QT) - Prior Machining - Nitrocarburizing - Finishing process because of strength and machinability. When we tried to change steel to lead-free, we examined to change to sulfur-added free-cutting steel. However, chip friability of sulfur-added free-cutting steel is inferior to lead one. Thus, we concerned about increase in machining expense. Then, heat-treatment after forging was examined to change from QT to normalizing for reducing the heat-treatment expense.
Journal Article

Scuderi Split Cycle Research Engine: Overview, Architecture and Operation

2011-04-12
2011-01-0403
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. It also creates the possibility for pneumatic hybridization of the engine. This paper reviews the first Scuderi split cycle research engine, giving an overview of its architecture and operation. It describes how the splitting of gas compression and combustion into two separate cylinders has been simulated and how the results were used to drive the engine architecture together with the design of the main engine systems for air handling, fuel injection, mixing and ignition. A prototype engine was designed, manufactured, and installed in a test cell. The engine was heavily instrumented and initial performance results are presented.
Technical Paper

Navigation Control in an Urban Autonomous Ground Vehicle

2011-04-12
2011-01-1037
Southwest Research Institute developed an Autonomous Ground Vehicle (AGV) capable of navigating in urban environments. The paper first gives an overview of hardware and software onboard the vehicle. The systems onboard are classified into perception, intelligence, and command and control modules to mimic a human driver. Perception deals with sensing from the world and translating it into situation awareness. This awareness is then fed into intelligence modules. Intelligence modules take inputs from the user to understand the need to navigate from its current location to another destination and, then, generate a path between them on urban, drivable surfaces using its internal urban database. Situational awareness helps intelligence to update the path in real time by avoiding any static/moving obstacles while following traffic rules.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

Development of a Synthetic Diesel Exhaust

2008-04-14
2008-01-0067
A two-phase study was performed to establish a standard diesel exhaust composition which could be used in the future development of light-duty diesel exhaust aftertreatment. In the first phase, a literature review created a database of diesel engine-out emissions. The database consisted chiefly of data from heavy-duty diesel engines; therefore, the need for an emission testing program for light- and medium-duty engines was identified. A second phase was conducted to provide additional light-duty vehicle emissions data from current technology vehicles. Engine-out diesel exhaust from four 2004 model light-duty vehicles with a variety of engine displacements was collected and analyzed. Each vehicle was evaluated using five steady-state engine operating conditions and two transient test cycles (the Federal Test Procedure and the US06). Regulated emissions were measured along with speciation of both volatile and semi-volatile components of the hydrocarbons.
Technical Paper

Monitoring of Ring Face, Ring Side and Liner Wear in a Mack T-10 Test, using Surface Layer Activation

2007-10-29
2007-01-4002
The API has established lubricant specifications, which include standard tests for ring and liner wear. The Mack T-10 is one such test, performed on a prototype engine with Exhaust Gas Recirculation (EGR). At EOT, the liner wear is measured by profilometry, while the ring wear is measured by weight loss. It was decided to monitor the wear of the rings and liners during a full-length T10 test in order to observe the evolution of the wears and wear rates over the course of the test, by using the Surface Layer Activation (SLA) and Bulk Activation (BA) techniques. Three different radioisotopes were created, one in the liners at the turnaround zone, one in the chromium-containing coating on the ring faces, and one in the iron bulk of the rings. This enabled us to observe the wear characteristics of these three components separately. In particular, we were able to separate the face and side ring wears, which cannot be done with simple weight-loss measurements.
Technical Paper

Effect of Contamination on Filter Performance

2007-10-29
2007-01-4139
Excessive wear and malfunctions in fluid power handling systems are often caused by contaminants or small particles that may be built-in, self-generated, or ingested from the environment. Filtration subsystems in such systems are designed to prevent these problems from happening. However, machine performance degradation, shortened service life, and even catastrophic failures are occasionally encountered in the real world. Then, what is the missing linkage? This paper tries to address the issue using a multi-disciplinary approach that employs failure analyses, laboratory experimentation, predictive correlation, and concurrent engineering with an emphasis on contaminant characterization and filtration strategies. Practical contamination analysis methodologies are discussed via examples and case studies.
X