Refine Your Search

Topic

Author

Search Results

Technical Paper

Brake Pad Life Monitoring System Using Machine Learning

2024-01-16
2024-26-0032
In the context of vehicular safety and performance, brake pads represent a critical component, ensuring controlled driving and accident prevention. These pads consist of friction materials that naturally degrade with usage, potentially leading to safety issues like delayed braking response and NVH disturbances. Unfortunately, assessing brake pad wear remains challenging for vehicle owners, as these components are typically inaccessible from the outside. Moreover, Indian OEMs have not yet integrated brake pad life estimation features. This research introduces a hybrid machine learning approach for predicting brake pad remaining useful life, comprising three modules: a weight module, utilizing mathematical formulations based on longitudinal vehicle dynamics to estimate vehicle weight necessary for calculating braking kinetic energy dissipation; and temperature and wear modules, employing deep neural networks for predictive modeling.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
Technical Paper

Improvement of AC System for Bus with Tropical/Hot Ambient Application

2023-09-14
2023-28-0016
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Development of Mold in Color Plastics to Eliminate Paint without Compromising Aesthetic & Functional Requirements

2023-05-25
2023-28-1321
Vehicle aesthetic appearance is critical factor in the perceived quality of a vehicle. Auto OEM focuses on the improvement of perceived quality. The perceived quality of a vehicle is improved by achieving a superior finish on the visible parts. Plastic parts used in visible areas are painted to achieve a superior finish & aesthetic. However, the painting process is very energy intensive, releases a lot of harmful VOCs into the environment, emits carbon di-oxide into the environment & is a very costly process. Also, painted parts pose a challenge for recycling at the end of life. For painting one square meter area, around 6.5 Kg of co2 is released. Additionally, the painting cost contributes to around 60 % of the part cost. As the emphasis has increased on sustainability & reducing the cost, we took the challenge to develop novel mold in color material to eliminate the painting process without compromising the aesthetic & functional requirements of part.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Technical Paper

Comparative Analysis of Different Corrosion Test Cycles

2023-05-25
2023-28-1325
Corrosion in automotive industry is broadly categorized into cosmetic & perforation corrosion. Cosmetic corrosion comprises of superficial red rust which is deleterious to the overall aesthetic appeal of the vehicle but can be rectified. Perforation corrosion involves complete erosion of the panel, compromising structural integrity of the respective part. Perforation corrosion demands part replacement. In order to tackle this menace, automotive OEMs have formulated varied corrosion strategies in terms of selection of appropriate substrate, part design & surface protection scheme. Validation of various corrosion strategies become pivotal during the development phase of various parts and assemblies. Traditionally, Salt Spray Test (SST) has been used to determine corrosion life of materials/parts/assemblies. This test however does not simulate real-world conditions.
Technical Paper

Severe Plastic Deformation Treatment for Geometry and Residual Stress Modification of Weld Toe

2023-05-25
2023-28-1356
Structural automotive components are subjected to fatigue damage under cyclic stresses and strains. The fatigue damage initiates at stress levels lower than the elastic limit of the material and results in cracks. The Initial fatigue cracks are difficult to detect, such cracks can develop rapidly and cause sudden and brittle failure in structures. Many structural automotive components are fabricated involving weld induced local conditions such as geometry of weld toe and localized tensile residual stresses. These conditions are favorable for initiation of fatigue damage at weld toe. In current work, sever plastic deformation (SPD) which is based on high frequency impact treatment using ultrasound energy was applied on weld toe of representative weld joints. The effect of SPD on weld toe geometry modification, microstructure and residual stresses were evaluated. Microscopic and X-ray diffraction techniques were used to study the effects of SPD.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

Digital Simulation of Welding Process to Optimize Residual Stresses and Microstructure of Welded Suspension Component

2022-10-05
2022-28-0380
Automotive suspension system forms the basis for the design of vehicle with durability, reliability and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The growing demand for light-weighting has culminated into numerous designs of rear twist beam suspension systems. However these designs drive their design flexibility by incorporating multiple welding joints into the suspension system. Welding joints helps in designing complex automotive systems. However, these welding joints bring in weak points as welding process itself degrades parent material and introduces areas with high tensile residual stresses. These areas with tensile residual stresses are susceptible to undergo fatigue failure. Thus, there is a need to improve welding process to mitigate harmful tensile residual stresses.
Technical Paper

Hole Expansion Characteristics of Advanced High Strength Steel (AHSS) Grades and Their Effects on Manufacturability in Automotive Industry

2022-10-05
2022-28-0350
Currently, automotive industries are using Advanced High-Strength Steels (AHSS) sheet grades to achieve key requirements like light weighting and improved crash performance. But forming of AHSS grades becomes key challenge due to its lesser ductility and edge fracturing tendency during forming. In general, most of the automotive components undergoes shearing operations like blanking and punching which affects the edge ductility of the steel. AHSS grades possess limited edge ductility compared with conventional steel grades which results in edge fracturing due to tensile strain during stretch flanging operation. Stretch flange-ability is an important formability characteristic, which aids in material selection to avoid edge fracturing of complex shaped parts. Material with better stretch flange-ability possess better edge ductility and hence perform better in stretch flanging of sheet metal.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Engine Mount Bracket Design Consideration for Impact Load Requirement

2022-03-29
2022-01-0758
The primary function of an engine mounting bracket is to support the powertrain system in all road conditions without any failure. The mount has to withstand different road conditions and driving maneuvers which exert loads on it. Also, it is challenging to change the mounting locations and types after the engine is built; hence it is paramount to verify the mounting brackets against all abuse loads in the design stage. The Car manufacturers ensure engine mount bracket design meets CAE's (Computer-aided engineering) static and fatigue load cases. The CAE is performed using digital RLD (Road load data) loads. The design checks cumulative strain or stress against specified service life requirements during break and fatigue FOS (Factor of safety) calculations. However, it is difficult to simulate the material's fracture toughness to estimate the effect of the impact load on the mounting bracket.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
X