Refine Your Search

Topic

Search Results

Journal Article

Detection of Unintended Acceleration in Longitudinal Car Following

2015-04-14
2015-01-0208
This paper presents a model-based approach to detect unintended acceleration (UA) as well as other vehicle problems. A diagnostic system is formulated by detecting several specific vehicle events such as acceleration peaks and gear shifting. Mathematical models are created for these events based on simulation data and the final diagnostic conclusion is drawn from the voting result of all these models. The detection algorithm is validated using independent data sets obtained from Matlab/Simulink. A three dimensional vehicle model is built to implement traffic simulation. Vehicle problems and drivers' reactions are simulated and added during the process. Sensor noise is also considered and corresponding filters are designed and applied. The results show that the fault diagnostic system is successful in detecting UA.
Technical Paper

High Power Discharge Combustion Effects on Fuel Consumption, Emissions, and Catalyst Heating

2014-10-13
2014-01-2626
A key element to achieving vehicle emission certification for most light-duty vehicles using spark-ignition engine technology is prompt catalyst warming. Emission mitigation largely does not occur while the catalyst is below its “light-off temperature”, which takes a certain time to achieve when the engine starts from a cold condition. If the catalyst takes too long to light-off, the vehicle could fail its emission certification; it is necessary to minimize the catalyst warm up period to mitigate emissions as quickly as possible. One technique used to minimize catalyst warm up is to calibrate the engine in such a way that it delivers high temperature exhaust. At idle or low speed/low-load conditions, this can be done by retarding spark timing with a corresponding increase in fuel flow rate and / or leaning the mixture. Both approaches, however, encounter limits as combustion stability degrades and / or nitrogen oxide emissions rise excessively.
Journal Article

Low Temperature Heat Release of Palm and Soy Biodiesel in Late Injection Low Temperature Combustion

2014-04-01
2014-01-1381
The first stage of ignition in saturated hydrocarbon fuels is characterized as low temperature heat release (LTHR) or cool flame combustion. LTHR takes place as a series of isomerization reactions at temperatures from 600K to 900K, and is often detectable in HCCI, rapid compression machines, and early injection low temperature combustion (LTC). The experimental investigation presented attempts to determine the behavior of LTHR in late injection low temperature combustion in a medium duty diesel as fuel varies and the influence of such behavior on LTC torque and emissions.
Technical Paper

Evaluation of Ethanol Blends for Plug-In Hybrid Vehicles Using Engine in the Loop

2012-04-16
2012-01-1280
Their easy availability, lower well-to-wheel emissions, and relative ease of use with existing engine technologies have made ethanol and ethanol-gasoline blends a viable alternative to gasoline for use in spark-ignition (SI) engines. The lower energy density of ethanol and ethanol-gasoline blends, however, results in higher volumetric fuel consumption compared with gasoline. Also, the higher latent heat of vaporization can result in cold-start issues with higher-level ethanol blends. On the other hand, a higher octane number, which indicates resistance to knock and potentially enables more optimal combustion phasing, results in better engine efficiency, especially at higher loads. This paper compares the fuel consumption and emissions of two ethanol blends (E50 and E85) with those for gasoline when used in conventional (non-hybrid) and power-split-type plug-in hybrid electric vehicles (PHEVs).
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Heat Release Parameters to Assess Low Temperature Combustion Attainment

2011-04-12
2011-01-1350
Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine-out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species of notoriety for their difficulty in after-treatment removal. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). This paper presents an investigation into the manifestation of LTC in the calculated heat release profile. Such a study could be important since some extreme LTC conditions may exhibit a return to the soot-NOx tradeoff, rendering an emissions-based definition of LTC unhelpful.
Technical Paper

Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications

2010-11-02
2010-01-1734
In this study, a molten salt-based high temperature nanofluid is explored for solar thermal energy conversion applications. The efficacy of the nanofluid as a heat transfer fluid (HTF) in concentrating solar power systems is explored in this study. The molten salt can enable higher operating temperature resulting in enhancement of the overall system efficiency for power generation (using, for example, a Rankine cycle or Stirling cycle). However, the usage of the molten salt as the HTF is limited due to their low specific heat capacity values (compared with, for example, water or silicone oils). The low specific heat of molten salt can be enhanced by doping small amount of nanoparticles. Solvents doped with minute concentration of nanoparticles are termed as "Nanofluids." Nanofluids are considered as attractive coolants for thermal management applications due to their anomalously enhanced thermal properties (compared with the neat solvent).
Technical Paper

Biodiesel Effects on Cycle-to-Cycle Variability of Combustion Characteristics in a Common-Rail Medium-Duty Diesel Engine

2010-04-12
2010-01-0867
The potential of biodiesel as a viable alternative to petroleum diesel has been driving experimental efforts to insure efficient, high-power, and low emissions operation for many years. Literature is rich with discussion about the differences in operation between biodiesel and petroleum diesel; often, however, these discussions focus on time averaged results that may not detect subtle differences in cycle-to-cycle operation. This aspect has motivated this research study, which compares certain combustion aspects of both fuels on a cycle-by-cycle basis. Thus, the objective of this experimental study is to link fuel property differences between biodiesel and petroleum diesel fuels to potential differences in cycle-to-cycle variability. Steady-state operation of a medium-duty diesel engine at nine different operating conditions, for each fuel, is discussed.
Technical Paper

Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine

2010-04-12
2010-01-0565
The often-observed differences in nitrogen oxides, or NOx, emissions between biodiesel and petroleum diesel fuels in diesel engines remain intense topics of research. In several instances, biodiesel-fuelled engines have higher NOx emissions than petroleum-fuelled engines; a situation often referred to as the "biodiesel NOx penalty." The literature is rich with investigations that reveal many fundamental mechanisms which contribute to (in varying and often inverse ways) the manifestation of differences in NOx emissions; these mechanisms include, for example, differences in ignition delay, changes to in-cylinder radiation heat transfer, and unequal heating values between the fuels. In addition to fundamental mechanisms, however, are the effects of "system-response" issues.
Technical Paper

A Mild Hybrid Vehicle Drive Train with a Floating Stator Motor-Configuration, Control Strategy, Design and Simulation Verification

2002-06-03
2002-01-1878
Significant amount of energy is lost in frequent braking, automatic transmission and engine idling for a conventional engine powered passenger car while driving in cities. In this paper, a mild hybrid vehicle drive train has been introduced. It uses a small electric motor with floating stator, called TRANSMOTOR and small and a battery pack. The transmotor functions as a generator, engine starter, frictionless clutch (electric torque coupler), regenerative braking and propelling. The mild hybrid drive train can effectively reduce the urban-driving fuel consumption by regenerative braking, eliminate of energy losses in conventional automatic transmission and engine idling. The drive train can use low voltage system (42V for example), due to the low electric power rating, and is more similar to conventional drive train than full hybrid vehicle. Therefore, less effort is needed to evolve it from conventional vehicles.
Technical Paper

Study of Hybrid Electric Vehicle Drive Train Dynamics Using Gyrator-Based Equivalent Circuit Modeling

2002-03-04
2002-01-1083
The main idea in the concept of advanced vehicles is to combine two or more power plants in order to improve the overall efficiency of the vehicle. The modeling of advanced vehicle is challenging, mainly because of the presence of several power plants in the system. After a presentation of the generalized equivalent circuit theory, including the electrical analogy and the theory of generalized gyrators and transformers, the modeling technique is compared to existing methods. Then, vehicle subsystems are modeled from the mechanical drive train to the different power plants and energy storages, according to the methodology. Some typical hybrid architectures are processed through the modeling technique and a final equivalent circuit is presented and discussed for each of them. Finally, the study of electromechanical interactions and mechanical transients is presented.
Technical Paper

A Mild Hybrid Drive Train for 42 V Automotive Power System-Design, Control and Simulation

2002-03-04
2002-01-1082
In this paper, a mild hybrid drive train has been proposed. A small electric motor with low rated voltage (42 V) is used to (1) propel the vehicle at low speed, (2) replace the fluid-coupled torque converter and (3) realize regenerative braking. With proper design and control, the fuel economy in urban driving can be significantly improved without much change from conventional drive train to the mild hybrid drive train.
Technical Paper

Impact Study of Field-Weakening Operation of Electric Motors on Drive Train Oscillations

2002-03-04
2002-01-1089
Studying the dynamics of electric motor drives is not easy. Indeed, there is no unified approach to model both the mechanical and the electrical elements of the motor drive in order to bring an intuitive understanding of the dynamic behavior. Moreover, for traction purposes, the machines are often used at field-weakening operation, which can be a source of unwanted oscillations. In this paper, the gyrator-based equivalent circuit modeling is presented. The method allows the understanding of some aspects of the dynamic behavior of DC motor drives such as the interaction between electric inductances and the rotor inertia and their oscillating behavior.
Technical Paper

Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train

2001-08-20
2001-01-2532
A general design methodology of the fuel cell powered hybrid vehicle drive train has been developed. With the methodology and a computer simulation program, all of the systematic parameters can be designed, such as, the rated power of the electric motor drive, fuel cell system, peaking power source as well as the energy capacity. An overall control strategy has also been developed. The main function of the control strategy is to properly control the power produced by the fuel cell system and the peaking power source, so as to meet the power demand, maintain the energy level of the peaking power source in its optimal region and operate the fuel cell system within its high efficiency region. In this paper, a design example has also been introduced in each section.
Technical Paper

Development of a Dedicated LPG-Fueled Spark-Ignition Engine and Vehicle for the 1996 Propane Vehicle Challenge

1997-08-06
972692
This paper describes the development of a dedicated liquefied petroleum gas (LPG) fueled spark-ignition engine and vehicle (Chrysler minivan) for the 1996 Propane Vehicle Challenge. This student competition was intended to advance the development of propane-fueled vehicles, to encourage innovation in propane vehicle technology, and to provide student engineers with a hands-on learning experience. The student designs included LPG fuel storage and delivery systems, engine modifications (such as increased compression ratio by the use of domed pistons), a vapor fuel injection system, custom electronic controls, and specialized catalyst units. The vapor fuel injection system design included a vaporizer (for cold ambient temperatures) and port injection designed to inject LPG vapor at 276 kPa (40 psia). The LPG-fueled engine possessed performance and efficiency parameters as good as, or better than, the original gasoline-fueled engine.
Technical Paper

Parametric Design of the Drive Train of an Electrically Peaking Hybrid (ELPH) Vehicle

1997-02-24
970294
The operation of an electrically peaking hybrid vehicle (ELPH) can be divided into two basic modes. • Constant or cruising speed mode in which a small internal combustion engine (ICE) is used to power the vehicle. • Peak power mode in which the combination of an electric motor and ICE is used to supply peak power for acceleration and limited-duration steep hill climbing of the vehicle. A method, by which the engine size and the speed reduction ratio from the engine to drivewheels can be developed based on the cruising mode, is presented in this paper. The electric motor power rating and the motor gear ratio to the drive wheels can then be determined, based on the acceleration and gradeability. The results show that a simple single-gear transmission would be a good selection for overall performance.
Technical Paper

A Versatile Computer Simulation Tool for Design and Analysis of Electric and Hybrid Drive Trains

1997-02-24
970199
This paper discusses a new computer simulation tool, V-Elph, which extends the capabilities of previous modeling and simulation efforts by facilitating in-depth studies of any type of hybrid or all electric configuration or energy management strategy through visual programming and by creating components as hierarchical subsystems which can be used interchangeably as embedded systems. V-Elph is composed of detailed models of four major types of components: electric motors, internal combustion engines, batteries, and vehicle dynamics which can be integrated to simulate drive trains having all electric, series hybrid, and parallel hybrid configurations. V-Elph was written in the Matlab/Simulink graphical simulation language and is portable to most computer platforms. A simulation study of a sustainable, electrically-peaking hybrid-electric vehicle was performed to illustrate the applicability of V-Elph to hybrid and electric vehicle design.
Technical Paper

An Empirically Based Electrosource Horizon Lead-Acid Battery Model

1996-02-01
960448
A empirically based mathematical model of a lead-acid battery for use in the Texas A&M University's Electrically Peaking Hybrid (ELPH) computer simulation is presented. The battery model is intended to overcome intuitive difficulties with currently available models by employing direct relationships between state-of-charge, voltage, and power demand. The model input is the power demand or load. Model outputs include voltage, an instantaneous battery efficiency coefficient and a state-of-charge indicator. A time and current dependent voltage hysteresis is employed to ensure correct voltage tracking inherent with the highly transient nature of a hybrid electric drivetrain.
Technical Paper

A Review and Thermodynamic Analysis of a Rotary-Vee Internal Combustion Engine

1995-02-01
950453
The rotary-vee engine is a novel and unusual internal combustion engine. The rotary-vee engine is unique in that all of the components have rotary motion, but the combustion chamber and piston design is similar to a reciprocating engine. Of particular significance, the rotary-vee engine design includes pistons with rings to accomplish the sealing of the combustion chamber. Thus, the rotary-vee engine may offer the sealing benefits of the conventional piston engine, and the vibration and balance characteristics of a rotary engine. This paper includes a review of rotary engines, and places the rotary-vee engine in the context of all rotary engines. In addition, a thermodynamic analysis of the operation of a rotary-vee engine is reported. The rotary-vee engine possesses some advantages relative to other rotary engine designs such as piston ring sealing, and the thermodynamic analysis indicates similar performance as compared to conventional reciprocating engines.
X