Refine Your Search

Topic

Author

Search Results

Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
Technical Paper

F/A-18 E/F Outer Wing Lean Production System

2001-09-10
2001-01-2608
The Boeing F/A-18 E/F Program Wing Team, Lean Organization and Phantom Works have partnered to develop a “state of the art” lean production system for the Outer Wing that represents an evolutionary change in aircraft design and assembly methodology. This project is focused on improving quality, cycle and cost performance through the implementation of lean principles, technology integration and process improvements. This paper will discuss the approach taken to reach the end state objectives and the technologies and processes being developed to support it. Items to be discussed include lean principles and practices, new tooling concepts, improved part assembly techniques, advanced drilling systems, process flow enhancements and part handling/part delivery systems.
Technical Paper

Machined Component Quality Improvements Through Manufacturing Process Simulation

2001-09-10
2001-01-2607
New manufacturing technologies such as high speed machining (HSM) are being developed to produce high quality aerospace components. While our developing understanding of machining dynamics is enabling precise control of cutting tools to provide for high dimensional accuracy, residual stresses present in aluminum mill products can compromise the ability to machine dimensionally accurate components from these stock materials. The advantages of precise tool control can be lost if the metal being cut moves during machining. And, even a perfectly machined part that distorts when it is released from the machine bed will cause problems upon assembly. Thus, ensuring the quality of the mill product becomes an enabling technology for advanced manufacturing approaches such as HSM.
Technical Paper

EVA Operations Using the Spacelab Logistics Pallet for Hardware Deliveries

2001-07-09
2001-01-2201
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

Electric 30,000 RPM Shave Spindle for C Frame Riveter and High Performance Compact Aerospace Drill

2000-09-19
2000-01-3017
Two spindles are discussed in this paper. The first spindle was installed on nine C-frame riveters on the 737/757 wing line at the Boeing Renton facility. Due to discontinuing the use of Freon coolant and cutting fluid, the C-frame riveters had difficulty shaving 2034 ice box rivets with the existing 6000 RPM hydraulic spindles. The solution was to install electric 30,000 RPM shave spindles inside the existing 76.2 mm (3 in.) diameter hydraulic cylinder envelope. The new spindle is capable of 4 Nm (35 in. lbs.) of torque at full speed and 110 kgf (250 lbs.) of thrust. Another design of interest is the Electroimpact Model 09 spindle which is used for 20,000 RPM drilling and shaving on wing riveting systems. The Model 09 spindle is a complete servo-servo drilling system all mounted on a common baseplate. The entire spindle and feed assembly is only 6.5″ wide.
Technical Paper

Assembly Techniques for Space Vehicles

2000-09-19
2000-01-3028
Assembly techniques for the majority of expendable and reusable launch vehicles have not changed much over the last thirty years. Some progress has been made, specifically on new programs, however, improvements on existing expendable launch vehicle production lines can be difficult to justify; even more so for one or two reusable vehicles. This presentation will focus on techniques and systems used for manual and automated assembly of expendable and reusable launch vehicle primary structures. Today's assembly is characterized by manual operations involving fixtures and templates, and all tasks are carried out primarily with single function hand tools. Typical assembly approaches used for metallic and composite primary structures will be discussed. Potential opportunities for process improvements utilizing advanced hand tools, mechanized and/or automated equipment will be addressed.
Technical Paper

Integrated Metrology & Robotics Systems for Agile Automation

2000-09-19
2000-01-3033
Aircraft manufacturing in the 21st century sees a future much different to that seen one and two decades before. Manufacturers of both military and commercial aircraft are challenged to become Lean, Agile and Flexible. As progress is slowly made toward introducing advanced assembly systems into production, the overall cost of automation is now more closely scrutinized. After spending tens of millions of dollars on large automated systems with deep foundations, many manufacturers find themselves locked into high cost manufacturing systems that have specific, inflexible configurations. This kind of scenario has caused a shift in the attitude of airframe assemblers, to go back to basics. Lean manufacturing is seen as a way to build aircraft with very low investment in equipment and tools. Today's advanced systems developers do understand the need for more affordable assembly systems.
Technical Paper

International Space Station Design for Dexterous Robotics - Inboard Truss Segments

2000-07-10
2000-01-2357
Over 200 International Space Station external high maintenance items have been designed for replacement by a dexterous robotics system in addition to space-suited astronauts. Planning for dexterous robotics maintenance increases flexibility for space station operations with a robot able to execute many tasks in place of a suited crew member, lowering the number of hours crew must spend on Extravehicular Activity (EVA). The five inboard truss segments of the station - S3, S1, S0, P1 and P3 - include 122 of these robot compatible maintenance items or On-orbit Replaceable Units (ORUs). This paper describes the impact robotic compatibility has had on the International Space Station (ISS) design, reviewing the inboard truss items as examples. Diverse challenges exist to verify each genre of ORU meets the dexterous robotics requirements.
Technical Paper

CFD Studies on the ECLSS Airflow and CO2 Accumulation of the International Space Station

2000-07-10
2000-01-2364
During a recent International Space Station (ISS) flight (Flight 2A.1), an improper ventilation event might have occurred and resulted in stuffy air, as reported by the crew. Even though no air samples were analyzed, the accumulation of metabolic CO2 in the ISS was suspected as the cause of the crew sickness. With no possibility of conducting an on-orbit test of this kind, it was decided to utilize Computational Fluid Dynamics (CFD) analysis to investigate this problem. Based on the Flight 2A.1 and 2A.2a configurations, a CFD model of the air distribution system was built to characterize airflow between the ISS elements. This model consists of Inter-module Ventilation (IMV) covering the Functional Cargo Block (FGB), two Pressurized Mating Adapters (PMA-1 and PMA-2), the Node-1, and portions of the Orbiter volume.
Technical Paper

International Space Station Propulsion Module Environmental Control and Life Support System

2000-07-10
2000-01-2296
The United States Propulsion Module (USPM) is a pressurized element and provides reboost, propulsive attitude control, control moment gyro (CMG) desaturation, and collision avoidance functions for the International Space Station (ISS). The USPM will dock with Node 2 at the pressurized mating adapter-2 (PMA-2). After docking with PMA-2, the USPM will provide mechanical and structural interfaces to the Space Shuttle, along with facilities for crew transfer and receiving resupply oxygen, nitrogen, water, helium, and propellants from the Space Shuttle. It is essential that the USPM maintain a safe and functional life support system during crew member passage and maintenance activities. It is complex and costly to design an operational system to satisfy all ISS requirements. This paper details an innovative USPM environmental control and life support system (ECLSS) design that satisfies all ISS requirements at a reduced cost.
Technical Paper

Payload Attach System for the ISS - Development and Verification for EVA Operations

1999-07-12
1999-01-2037
The process of developing a Payload Attach System (PAS) which will support a wide range of experimental and commercial payloads on the International Space Station (ISS) has experienced an interesting evolution during its design, development, test and evaluation (DDT&E) phase. This evolution has been caused in large measure by requirements intended to insure compatibility of the PAS with the extravehicular activity (EVA) crewmember during nominal and contingency operations in and around the PAS sites. As the design of the ISS transitioned from its Freedom predecessor, the effort to keep costs down by preserving as much of the original Freedom design as possible led to design decisions that challenged engineering thinking.
Technical Paper

Space Station Lab Flight Test Article Results and Analytical Model Correlations

1999-07-12
1999-01-2196
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. This paper reports on the results of Open Hatch ECLSS/ TCS Tests for International Space Station’s Lab Module. The hardware tested is referred to as proto-flight hardware. Upon satisfactorily passing these Open Hatch and later Closed Hatch, imposed ground based, proto-flight tests, the proto-flight hardware will become flight hardware. The Lab Module is scheduled for launch during late 1999. The particular ECLSS/TCS equipment discussed here are the Temperature Humidity and Control (THC) equipment and Intermodule Ventilation (IMV) equipment.
Technical Paper

Experience with a Geometry Programming Language for CFD Applications

1998-09-28
985572
The Boeing Aero Grid and Paneling System (AGPS) is a programming language with built-in geometry features. Accessible through either a graphical user interface (GUI) or through a command line, AGPS can be used by operators with different levels of experience. Distributed with AGPS are approximately 300,000 lines of macros, or command files, which automate many engineering design and analysis tasks. Most command files were developed to produce inputs to engineering analysis codes such as A502 [1] and TRANAIR [2]. In many cases, command files have been grouped together in AGPS “packages,” which offer users simple menu pick and dialog options to automate entire engineering processes.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
Technical Paper

Machine Readable Coding of 777 Wing Fastening Systems Tooling

1998-09-15
982133
This paper presents a detailed overview of the advantages and benefits of using 2-D barcodes, called Data Matrix codes, on Wing Fastening System (WFS) Tooling. This project was conducted on, but not limited to, the 777 Wing Fastening System (GEMCOR) tooling including the drills, fingers, and button dies. This paper will show how using Data Matrix codes to identify tooling will: Eliminate excessive downtime due to the operator using the incorrect tooling for a given tool setup. Reduce the cost associated with panel rework due to the use of incorrect tooling. Reduce the cost associated with excessive tool inventory or last minute ordering to keep up with production needs. Track tool life information for each specific tool. Provide operators with an easy to use tool setup reference document. And provide the factory with the ability to trace panel damage or defects back to the specific machine and exact tooling used.
Technical Paper

Inlet Hot Gas Ingestion (HGI) and Its Control in V/STOL Aircraft

1997-10-01
975517
A successful methodology was developed at Boeing Company to investigate hot-gas ingestion in vertical take-off and landing aircraft. It involves sub-scale model testing using specialized test facilities and test techniques. The baseline characteristics of hot-gas ingestion (HGI) and the performance of various HGI reduction techniques were qualitatively evaluated in the Boeing Hover Research Facility. Potential HGI reduction devices were then further tested at scaled pressures and temperatures in HGI facilities at NASA Lewis, Rolls Royce and British Aerospace. One of the successful HGI reduction devices was flight tested. This paper describes the application of Boeing HGI reduction methodology to three specific aircraft configurations.
Technical Paper

Airplane Flow-Field Measurements

1997-10-01
975535
The utility of airplane flow-field measurements for wind-tunnel testing is reviewed. The methods and equipment developed at Boeing for these measurements are also described. The details of the latest system are presented along with typical results from recent wind-tunnel tests. Using the latest system, flow-field surveys of airplane configurations in industrial low-speed and transonic wind tunnels provide spatial distributions of lift and drag (profile and induced) with good repeatability. In addition, the probe speed and survey region is optimized so that typical full-wake surveys take 20-30 minutes to complete. Final data, displayed as total pressure, velocity vectors, vorticity contours, and distributions of lift and drag (profile and induced) are available approximately 10 minutes after survey completion.
Technical Paper

Application of Temperature Sensitive Paint Technology to Boundary Layer Analysis

1997-10-01
975536
Temperature Sensitive Paint (TSP) technology coupled with the Reynolds number capability of modern wind tunnel test facilities produces data required for continuing development of turbulence models, stability codes, and high performance aerodynamic design. Data in this report include: the variation in transition location with Reynolds number in the boundary layer of a two-dimensional high speed natural laminar flow airfoil (HSNLF) model; additional bypass mechanisms present, such as surface roughness elements; and, shock-boundary layer interaction. Because of the early onset of turbulent flow due to surface roughness elements present in testing, it was found that elements from all these data were necessary for a complete analysis of the boundary layer for the HSNLF model.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
X