Refine Your Search


Search Results

Technical Paper

On-Road Monitoring of Low Speed Pre-Ignition

To meet increasingly stringent emissions and fuel economy regulations, many Original Equipment Manufacturers (OEMs) have recently developed and deployed small, high power density engines. Turbocharging, coupled with gasoline direct injection (GDI) has enabled a rapid engine downsizing trend. While these turbocharged GDI (TGDI) engines have indeed allowed for better fuel economy in many light duty vehicles, TGDI technology has also led to some unintended consequences. The most notable of these is an abnormal combustion phenomenon known as low speed pre-ignition (LSPI). LSPI is an uncontrolled combustion event that takes place prior to spark ignition, often resulting in knock, and has been known to cause catastrophic engine damage. LSPI propensity depends on a number of factors including engine design, calibration, fuel properties and engine oil formulation. Several engine tests have been developed within the industry to better understand the phenomenon of LSPI.
Technical Paper

Farm Tractor Efficiency Gains through Optimized Heavy-Duty Diesel Engine Oils

Modern agriculture has evolved dramatically over the past half century. To be profitable, farms need to significantly increase their crop yields, and thus there are amplified demands on farming equipment. Equipment duty cycles have been raised in scope and duration, as the required output of the agricultural industry to sustain a growing population has stimulated the need for further advances in effective productivity gains on the farm. The mainstay mechanical assistant to the farmer, the tractor, has also evolved with the changes in modern agriculture to meet the requirements of these newer tasks. Larger, more capable vehicles have been introduced to help farmers efficiently meet these demands. At the same time, the current generation of tractor diesel engine lubricants has facilitated high levels of performance in the agricultural equipment market for many years. This is a testament to the role modern lubricants play in productivity in such a critical industry.
Journal Article

Fuel Economy Durability - A Concept to be Considered for Motorcycle Oils

Motorcycle manufacturers have recognized that highly friction modified passenger car oils can be deleterious to clutch performance, leading to clutch slippage. To address this issue, a JASO specification for four-stroke motorcycle oils was developed in 1999, categorizing oils into high friction oils termed JASO MA and low friction oils termed JASO MB. The high friction oils were preferred for most motorcycles where the engine oil also lubricates the clutch and gears. New motorcycle transmission technologies have increased the number of dry clutch applications which has led to an increased demand for JASO MB oils to improve fuel efficiency. While JASO MB oils contain friction modifiers to improve initial fuel economy, the motorcycle specifications have not addressed the fuel economy durability of motorcycle oils.
Technical Paper

Development of Novel Friction Modifier Technology Part 2: Vehicle Testing

Requirements to reduce emissions and improve vehicle fuel economy continue to increase, spurred on by agreements such as the Kyoto Protocol. Lubricants can play a role in improving fuel economy, as evidenced by the rise in the number of engine oil specifications worldwide that require fuel economy improvements. A novel friction modifier technology has been developed to further improve vehicle fuel economy. The development of this novel friction modifier technology which contains only N,O,C,H was previously published along with the initial demonstration of performance in motorized Toyota engines. In order to validate this performance in fired engine tests, oil was evaluated in a Toyota Corolla Fielder with a 1500 cc gasoline engine. Testing was conducted in the Japanese 10-15 and JC08 modes, as well as the European EC mode, and the US FTP mode.
Technical Paper

Effects of Gasoline Driveability Index, Ethanol and Intake Valve Deposits on Engine Performance in a Dynamometer-Based Cold Start and Warmup Procedure

A discriminating dynamometer-based test was developed for evaluating cold start and warmup engine performance based on in-cylinder pressure measurements. The dynamometer test offers advantages in time required, flexibility and reduced variability over the vehicle procedure on which it was based. A parametric study on fuel driveability index (DI), ethanol content and intake valve deposit (IVD) rating demonstrated that each of these parameters had a statistically significant impact on engine cold start performance. Simple numerical offsets to fitted models based on oxygen content of the fuel did not account for the difference in engine performance of hydrocarbon-only versus ethanol-containing fuels. The effect of IVD on engine performance did not appear to depend on the DI of the fuel. The benefits of cleaner valves are seen even in fuels of very low DI.
Technical Paper

Step Forward In Diesel Engine Emissions Reduction: System Incorporating a Novel Low Emission Diesel Fuel Combined With a Diesel Oxidation Catalyst

Water-emulsified diesel fuel technology has been proven to reduce nitrogen oxides (NOx) and particulate matter (PM) simultaneously at relatively low cost compared to other pollution-reducing strategies. The value of this technology is that it requires absolutely no engine adjustments or modifications to reduce harmful emissions. Technologies that break the NOx -particulate trade-off are virtually non-existent, therefore understanding how the water contained in an emulsified fuel can reduce both NOx and PM simultaneously is critical. To understand this phenomenon, emulsified fuels with varying water levels (0 to 20%) were evaluated in a multi-cylinder marine engine using three different injection timings. This testing in an actual engine confirms that as the water level is increased the amount of NOx and PM are reduced without compromising engine performance.
Technical Paper

Increasing Diesel Fuel Filter Life Through the Use of Fuel Additives

Inconsistent fuel filter life is a problem that continues to plague most heavy-duty diesel fleets. It has been proven that fuel filter life can be strongly influenced by the thermal and oxidative stability of diesel fuel that is being filtered. Filters consistently exposed to diesel fuels that produce a tar-like substance in abundance upon heating (sometimes termed “asphaltenes”) will plug far more rapidly than filters exposed to diesel fuel that does not easily form these tar-like substances. Fuel additives have long been used to maintain fuel system cleanliness and to improve diesel fuel stability. It follows logically that such additives could have a positive impact on fuel filter life by maintaining the cleanliness of the fuel filtration media. This paper reviews the laboratory evaluations and field tests that were run to compare fuel filter life in both the presence and absence of diesel fuel additives.
Technical Paper

Automotive Traction Fluids: A Shift in Direction for Transmission Fluid Technology

Driven by global demands for improved fuel economy and reduced emissions, significant improvements have been made to engine designs and control systems, vehicle aerodynamics, and fuel quality. Improvements, such as the continuously slipping torque converter, have also been made to automatic transmissions to increase vehicle efficiency. Recently, belt-continuously variable transmissions (b-CVTs) have been commercialized with the promise of significant fuel economy improvements over conventional automatic transmissions. Automotive traction drive transmissions may soon join belt-CVTs as alternative automatic transmission technology. Much of the information reported in technical and trade publications has been on the mechanics of these traction drive systems. As automotive traction drives move closer to commercial reality, more attention must be given to the performance requirements of the automotive traction fluid.
Technical Paper

The Effect Of Mixing Diesel Fuels Additized With Kerosene and Cloud Point Depressants

Low temperature flow improvers help refiners meet diesel fuel cold flow specifications and optimize profits. However, some additives, cloud point depressants in particular, are under scrutiny since there have been cases where they interacted with other cold flow improvers and became less effective at depressing the cloud point of the diesel fuel[1]. This second paper in a series of studies[2] examines what effect mixing cloud point depressed diesel fuel with other cloud point depressed diesel fuel or with diesel fuel diluted with kerosene will have on the resultant fuel mixture's cloud point. The data show that cloud point depressants can be used safely and effectively with kerosene blended fuels and in conjunction with other cloud point depressants.
Technical Paper

The Effect on Vehicle Performance of Injector Deposits in a Direct Injection Gasoline Engine

This work presents a follow-up to previous efforts by the authors to investigate the susceptibility of gasoline direct injection (g-di) engines to deposit formation and the effect of those deposits on vehicle performance. A series of injector keep clean and clean up tests in base and additized fuels utilizing the ASTM D 5598 cycle provided a range of injector fouling levels. It is found that the g-di engine employed here is more susceptible to injector deposits than even the sensitive port fuel injected (PFI) engine used as industry reference in the D 5598 procedure. Injector keep clean and clean up performance of several representative deposit control chemistries are evaluated. In order to determine the effect of injector fouling on performance, emissions and driveability tests are performed on the vehicles at varying levels of injector fouling. Regulated emissions, particulates, fuel consumption and driveability are all shown statistically to be linked to injector fouling.
Technical Paper

The Effect of Passenger Car Motor Oil Detergent System on Vehicle Tailpipe Emissions

The International Lubricant Standardization and Approval Committee (ILSAC) GF-2 specification requires Passenger Car Motor oils to provide enhanced fuel economy in a modern low friction engine (ASTM Sequence VIA). The durability of this fuel economy improvement is becoming increasingly important and will be address in the successor to the Sequence VIA, the Sequence VIB, which is currently under development for ILSAC GF-3. Previous investigations have indicated that the choice of detergent system and friction modifier has a large impact on the fuel economy of a lubricant. As a result of a study undertaken to further investigate these effects in a 1994 Ford Crown Victoria running the EPA Federal Test Procedure, a significant impact on tailpipe emissions was discovered. Detergent system affected both regulated emissions (hydrocarbon (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) emissions), and non-regulated emissions (carbon dioxide emissions).
Technical Paper

An Investigation Into the Effect of Viscosity Modifiers and Base Oils on ASTM Sequence Via Fuel Economy

The international Lubricant Standardization and Approval Committee (ILSAC) GF-2 specification requires Passenger Car Motor Oils to provide enhanced fuel economy in a modern low friction engine (ASTM Sequence VIA). In previous SAE publications the authors have studied the boundary lubrication regime and documented the impact of friction modifiers and antiwear additives on Sequence VIA fuel economy. This paper shifts the focus to the hydrodynamic lubrication regime and details fundamental studies of viscosity modifiers and base oils on fuel economy as measured by this low friction engine. The viscosity modifiers were found to have surprisingly little impact on this test, while moving to base oils of higher viscosity index improved fuel economy as might be theoretically expected. A study of formulating SAE 5W-30 motor oils with base oils of increasing viscosity index showed the optimum fuel economy was able to be obtained with a high viscosity index base stock.
Technical Paper

EMA Durability Tests on High Oleic Sunflower and Safflower Oils in Diesel Engines

This paper presents the evaluation results from the EMA durability test on 25% high oleic sunflower oil/75% diesel fuel and 25% high oleic safflower oil/75% diesel fuel. The test results from both fuels were compared to the outcome for a standard diesel fuel. The fuels were compared based on the performance and emissions results including; power output, fuel consumption, CO, CO2, NO and HC and the carbon and lacquer residue formation on the internal parts of the engine. The results indicated no significant change in engine performance for the tested fuels, throughout the duration of the investigation. The carbon and lacquer residue formations were within a normal range for both fuels in comparison to the results from the fuel for standard diesel fuel.
Technical Paper

Formulating for ILSAC GF-2 - Part 2: Obtaining Fuel Economy Enhancement from a Motor Oil in a Modern Low Friction Engine

The proposed International Lubricant Standardization and Approval Committee (ILSAC) GF-2 specification requires Passenger Car Motor Oils to provide enhanced fuel economy in a modern low friction engine (Sequence VIA). This paper details fundamental studies of lubricant effects on fuel economy as measured by this low friction engine. Several conventional friction modifiers were tested with surprising results. One ester friction modifier, Ester B, which provides excellent fuel economy improvement in the Sequence VI, was found to be detrimental to the Sequence VIA. A second ester friction modifier, Ester A, performed as expected. Additionally, two molybdenum compounds, which are reported to provide excellent fuel economy in the Sequence VI, showed no fuel economy benefit in the Sequence VIA.
Technical Paper

Effects of Fuel and Additives on Combustion Chamber Deposits

The effects of gasoline composition, as represented in typical regular and premium unleaded gasolines and fuel additives, on Combustion Chamber Deposits (CCD) were investigated in BMW and Ford tests. In addition, the influences of engine lubricant oil and ethanol oxygenate on CCD were examined in Ford 2.3L engine dynamometer tests. Also, additive effects of packages based on mineral oil fluidizers versus synthetic fluidizers were studied in several different engines for CCD. Finally, a new method for evaluating the effect of fluidizers on valve sticking is introduced.
Technical Paper

Diesel Fuel Properties and Additive Effects on Dl Injector Deposit Formation

A test was developed by the Cummins Engine Company to evaluate Diesel fuel quality and potential additive effects. This test utilizes a Cummins L10 Diesel engine with a PT fuel system and stepped plunger injectors. A modified CRC rating system is used to quantify deposit levels. This paper further investigates the L10 Injector Depositing Test and will focus on Diesel fuel and additive variables. In the original work, the bulk of the data was collected on an industry standard reference fuel, Cat 1-H, as opposed to commercially available Diesel fuels. Commercially available Diesel fuel varies in composition with regard to sulfur level, percent aromatics, final distillation end point, and cetane number. To evaluate these fuel properties and their possible effects on injector deposit formation, two test matrices were designed. The first experiment is a 12-run fractional factorial design with four factors: additive level, sulfur, aromatics, and 90 percent distillation point (T90).
Technical Paper

Diesel Fuel Lubricity Development of a Constant Load Scuffing Test Using the Ball on Cylinder Lubricity Evaluator (BOCLE)

A test method has been developed which provides for the rapid measurement of the scuffing performance of diesel fuel using the Ball-On-Cylinder Lubricity Evaluator (BOCLE). A test can be completed in less than one hour. Data has been generated indicating that the method achieves good discrimination between fuels of varying lubricity and correlates well with fuel performance as measured in pump tests.
Technical Paper

Assessing the Lubrication Needs for M85 Fueling Using Short-Trip Field and Engine Dynomometer Tests

The technology has been developed which will allow manufacturers to produce cars capable of running on methanol/gasoline blends with a methanol content up to 85% (i.e., M85). These cars will operate on varying methanol/gasoline ratios without any adjustments from the driver. The dual-fuel capability is attractive since vehicle use will not be handicapped by a restricted fuel distribution system. In addition, it provides the option of running on an environmentally “cleaner” fuel where it is available. The advent of fuel-flexible vehicles encourages the development of lubricants which will satisfy the demands of both fuels. The unique properties of methanol, however, increase the challenges of meeting the lubricant performance needs. Field and engine dynamometer testing have been aimed at understanding the response of key lubricant variables with M85. Short-trip, cold-weather conditions have been of particular concern.
Technical Paper

Methanol-Capable Vehicle Development: Meeting the Challenge in the Crankcase

A major drive to develop methanol-fueled vehicles began with the 1973 oil embargo. Early work with dedicated methanol-fueled vehicles demonstrated that lubricant choice influenced engine durability. The qualities desired were not defined by the gasoline engine oil classification system in place at the time. As a result oils were developed which optimized those properties deemed desirable for methanol fuel. The advent of fuel sensors made it possible to design a vehicle which can operate on gasoline or gasoline with varying levels of methanol without intervention by the operator. This created a need for a lubricant that can handle a diversity of methanol/gasoline mixtures as well as conventional gasoline. The paper reviews some of the lubricants that have been used in prototype methanol-capable vehicles and the improvement of these formulations to meet the latest gasoline engine performance criteria while maintaining satisfactory methanol performance.
Technical Paper

Copper Fuel Additives as a Part of a Particulate Emmission Control Strategy

The use of a copper diesel fuel additive in an emission control system improves particulate oxidation. This expands the operability of available systems by reducing the particulate mass loading and related external energy consumption required during regeneration. Easier, more frequent regenerations improve overall engine/system efficiency and reduce thermal stress on filtration media. Procedures for optimizing additive use are presented. In addition, the results from a health study are reviewed.