Refine Your Search

Topic

Author

Search Results

Technical Paper

A real-world fleet test of the effects of engine oil on Low Speed Pre-Ignition occurrence in TGDi engine

2019-12-19
2019-01-2294
In the last decade, numerous studies have been conducted to investigate the mechanism of Low Speed Pre-Ignition (LSPI) in Turbocharged Gasoline Direct Injection (TGDi) engines. According to technical reports, engine oil formulations can significantly influence the occurrence of LSPI particularly when higher levels of calcium-based additives are used, increasing the tendency for LSPI events to occur. While most of the studies conducted to date utilized engine tests, this paper evaluates the effect of engine oil formulations on LSPI under real-world driving conditions, so that not only the oil is naturally aged within an oil change interval, but also the vehicle is aged through total test distance of 160,000 km. Three engine oil formulations were prepared, and each tested in three vehicles leading to an identical fleet totaling nine vehicles, all of which were equipped with the same TGDi engine.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

Developing Efficient Motorcycle Oils

2018-10-30
2018-32-0021
Motorcycle OEMs faced with stringent global fuel economy and emission regulations are being forced to develop new hardware and emissions control technologies to remain compliant. Motorcycle oils have become an enabling technology for the development of smaller, more efficient engines operating at higher power density. Many OEMs have therefore become reliant on lubricants to not only provide enhanced durability under more extreme operating conditions, but to also provide fuel economy benefits through reduced energy losses. Unlike passenger car oils that only lubricate the engine, motorcycle oils must lubricate both the engine and the drive train. These additional requirements place different performance demands versus a crankcase lubricant. The drive train includes highly loaded gears that are exposed to high pressures, in turn requiring higher levels of oil film strength and antiwear system durability.
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Axle Life - Part II

2006-10-16
2006-01-3272
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has increased the impact of these vehicle classes on the manufacturer's CAFE (Corporate Average Fuel Economy) numbers. Consumers often use light trucks and SUVs in applications such as prolonged towing at highway speeds, resulting in heavy loading and/or high operating temperatures in the axle. These conditions require superior axle lubricant protection, often provided by choosing a higher viscosity fluid (e.g., SAE 75W-140). Traditionally, the choice of these higher viscosity fluids for enhanced durability performance often results in reduced city-highway efficiency. This paper will describe the use of controlled axle dynamometer laboratory testing methods to develop fluids that maximize both fuel efficiency and durability performance across the wide spectrum of the new proposed viscosity classifications.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Vehicle Life

2005-10-24
2005-01-3860
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has challenged the original equipment manufacturers' (OEM) ability to meet the Corporate Average Fuel Economy (CAFE) specifications due to the increased contribution of these vehicle classes on fleet averages. The need for improved fuel economy is also a global issue due to the relationship of reduced fuel consumption to reduced CO2 emissions. Vehicle manufacturers are challenged to match the proper fluid with the application to provide the required durability protection while maximizing fuel efficiency. Recent new viscosity classifications outlined under SAE J306 aid in more tightly defining options for lubricant choice for a given application. Changes to the SAE J306 viscosity classification define new intermediate viscosity grades, SAE 110 and SAE 190.
Technical Paper

Field Experience with Selected Lubricants for Commercial Vehicle Manual Transmissions

2005-05-11
2005-01-2176
Laboratory testing is an essential part of product development. However, it usually only reflects a small portion of the experience that a lubricant may see in actual service conditions. Many laboratory tests are designed to only address one or two facets of what is deemed to be critical performance areas. Since it is difficult to cover all of the critical performance conditions problems sometimes arise in service that were not anticipated by the laboratory test. Or, conversely, some above average performance evolves during service that was not observed in a specific laboratory test. This paper highlights the overall performance of four manual transmission fluids approved or accepted by the manufacturer for this application. The evaluations were conducted in a city bus fleet with the test buses assigned to the same route for approximately 300,000 km over 30 months.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

Developing Next Generation Axle Fluids, Part III: Laboratory CAFE Simulation Test as a Key Fluid Development Tool

2003-10-27
2003-01-3235
The regulatory drive for emission reductions, increased fuel costs, and likely increases in Corporate Average Fuel Economy (CAFE) requirements have made fuel efficiency a key issue for North American vehicle manufacturers and marketers. At the same time the popularity of sport utility vehicles and light trucks has made it more difficult to achieve CAFE objectives. In order to accommodate both public vehicle preference and government mandated CAFE requirements automobile manufacturers are seeking all available means to increase fuel economy through advanced system design, engineered materials, and improved lubricant technology. Axle lubricants can have a significant impact on fuel economy; moreover, axle lubricants can be tailored to deliver maximum operating efficiency over either specific or wide ranges of operating conditions.
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Extended-Drain ATF Field Testing in City Transit Buses

2003-05-19
2003-01-1985
City transit buses are a severe environment for an automatic transmission fluid. The fluid must endure very high operating temperatures because of the use of brake retarders, frequent stop-and-go driving, and numerous shifts. There is an increasing trend toward the use of extended-drain, synthetic-based ATFs for such severe service applications. This paper documents a field trial with both synthetic and petroleum-based ATFs at a large municipal bus fleet in Southern California. Three different commercial ATFs, made with either API Group 2, 3, or 4 base oils, respectively, were compared after roughly 80,000 km. and one year of operation. Because of different additive packages in each fluid, not all of the results can be explained by base oil effects alone. However, the base oil is certainly a dominant contributor to the finished fluid performance. The following four variables were monitored by used oil analysis: iron wear, copper wear, viscosity change, and acid number change.
Technical Paper

Controlling the Corrosion of Copper Alloys in Engine Oil Formulations: Antiwear, Friction Modifier, Dispersant Synergy

2002-10-21
2002-01-2767
The next generation of engine oil under development has been formulated to maintain beneficial oil lubrication properties at increased engine operating temperatures, increased drain-oil intervals, and with the recirculation of exhaust gas back through the engine (EGR). These conditions result in the formation of degradation products from decomposed fuel, additives, and base oil. Decomposition products containing reactive sulfur can result in the corrosion of copper alloys. Sulfur-containing compounds currently used in these formulations can include zinc dithiophosphates (ZDP), molydithiophosphates, molydithiocarbamates, and molybdic acid/amine complexes, along with sulfur containing detergents and antioxidants. Interactions among these components and others in the formulation often determine the propensity of these formulations for corrosion. This paper will discuss the results of corrosion bench tests used to screen oil formulations for copper corrosion.
X