Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

A real-world fleet test of the effects of engine oil on Low Speed Pre-Ignition occurrence in TGDi engine

2019-12-19
2019-01-2294
In the last decade, numerous studies have been conducted to investigate the mechanism of Low Speed Pre-Ignition (LSPI) in Turbocharged Gasoline Direct Injection (TGDi) engines. According to technical reports, engine oil formulations can significantly influence the occurrence of LSPI particularly when higher levels of calcium-based additives are used, increasing the tendency for LSPI events to occur. While most of the studies conducted to date utilized engine tests, this paper evaluates the effect of engine oil formulations on LSPI under real-world driving conditions, so that not only the oil is naturally aged within an oil change interval, but also the vehicle is aged through total test distance of 160,000 km. Three engine oil formulations were prepared, and each tested in three vehicles leading to an identical fleet totaling nine vehicles, all of which were equipped with the same TGDi engine.
Technical Paper

Optimizing Steady State Diesel Efficiency and Emissions Using a SuperTurboTM on an Isuzu 7.8L Engine

2019-04-02
2019-01-0318
A driven turbocharger offers many benefits for internal combustion engines over traditional turbochargers or superchargers. One type of driven turbocharger, a SuperTurbo, is an amalgamation of supercharger, turbocharger, and turbo-compounder all in one device. This is accomplished through the combination of a high-speed traction drive that transfers bi-directional torque between the turbo shaft and a CVT, which then allows for overall ratio control between the turbo and the crankshaft. High efficiency turbine designs become feasible through the removal of overspeed and turbo lag design restrictions. Isuzu recognized the benefits of a driven turbocharger and the two companies have worked to evaluate it against more conventional turbochargers. This paper documents years of simulation, development, and engine testing, with a focus on steady state optimization of a 7.8L diesel engine.
Journal Article

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

2017-10-08
2017-01-2348
Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
Journal Article

Whirl of Crankshaft Rear End, Part 2: an L4-Cylinder Diesel Engine

2017-06-05
2017-01-1811
Since the sizes of the flywheel and clutch have been enlarged due to downsizing of diesel engines, the mass and moment of inertia at the crankshaft rear end have increased. Consequently, the serious bending stresses have appeared in the crankshaft rear. This paper describes the characteristics of those serious bending stresses, based on the mechanism for whirl resonance. The whirl resonance is largely impacted by the mass of the flywheel and clutch and by the distance from the crank-journal center of the rear end to the center of gravity of the flywheel and clutch.
Journal Article

Whirl of Crankshaft Rear End, Part1: an L6-Cylinder Diesel Engine

2017-06-05
2017-01-1810
As the issue of global warming has become more serious, needs for downsizing or weight saving of an engine has been getting stronger, and forces exerted on engine parts, especially force on a crankshaft, have been getting larger and larger. In addition, since a crankshaft is a heavy engine part, needs for saving weight have been getting stronger and stronger. Therefore, determining the mechanism of high stress generation in a crankshaft system is urgently needed. This paper describes the characteristics and mechanism of a severe bending stress caused by the whirl of crankshaft rear end of an inline 6-cylinder medium-duty diesel engine. The authors measured bending stress on the fillets of the crankshaft, and found severe levels of sharp peaks in the stress curves for the crankshaft rear. To figure out why the severe levels of sharp peaks appear, they analyzed and studied the measured data.
Technical Paper

A Study of Axle Fluid Viscosity and Friction Impact on Axle Efficiency

2016-04-05
2016-01-0899
The growing need for improved fuel economy is a global challenge due to continuously tightening environmental regulations targeting lower CO2 emission levels via reduced fuel consumption in vehicles. In order to reach these fuel efficiency targets, it necessitates improvements in vehicle transmission hardware components by applying advanced technologies in design, materials and surface treatments etc., as well as matching lubricant formulations with appropriate additive chemistry. Axle lubricants have a considerable impact on fuel economy. More importantly, they can be tailored to deliver maximum operational efficiency over specific or wide ranges of operating conditions. The proper lubricant technology with well-balanced chemistries can simultaneously realize both fuel economy and hardware protection, which are perceived to have a trade-off relationship.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Crankshaft Impact Noise and Three-Dimensional Vibration

2014-10-13
2014-01-2863
This paper describes the characteristics and mechanism of crankshaft impact noise that radiates from the cylinder body at full load medium engine speeds, based on the mechanism for axial vibration of crankshaft coupled with torsional vibration of crankshaft.
Journal Article

Analysis of Ticking Noise from Cam Bearing of a Diesel Engine

2012-09-10
2012-01-1625
Improving idle sound quality as well as reducing idle noise level is increasingly demanded for diesel engines. Therefore, unusual noise occurrence at idle is a serious problem, and the noise must be removed. This paper describes the characteristics and mechanism of ticking noise that is unusual noise radiated from the journal bearing of the camshaft at low idle speeds, based on the mechanism of cavitation in oil film existing between the journal and bearing.
Technical Paper

Experimental Analysis for Bolt Stress of Crank Pulley in a Diesel Engine

2010-10-05
2010-01-1983
A torsional damper is attached to a crankshaft to control the torsional vibration of the crankshaft system. However, the damper, which has a rubber part in between a damper mass and a damper hub, possesses a three-dimensional inertia moment and an inertia mass that could excite the crankshaft system. This paper discusses the generating mechanisms of the bending strain on the bolt to fasten the damper hub to the crankshaft, from the measured bolt strains and the measured behavior of the damper mass and the damper hub under the engine operating conditions.
Technical Paper

Experimental Analysis of the Stick-Slip Noise from the Crankshaft Oil Seal of the Diesel Engine

2007-08-05
2007-01-3502
The noise of diesel engines operating at low idle is an important noise evaluation criterion in both commercial vehicles and passenger cars. At low idle, a quiet, pleasant noise is required. Accordingly, unusual noise occurrence at low speed is a serious problem, and the noise must be prevented. In this paper, characteristics of the stick-slip noise, which is an unusual noise that radiates from the oil seal at low idle and the generating mechanism of the stick-slip noise in the six-cylinder-inline diesel engine are discussed. In addition, a method to prevent the stick-slip noise is presented.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Axle Life - Part II

2006-10-16
2006-01-3272
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has increased the impact of these vehicle classes on the manufacturer's CAFE (Corporate Average Fuel Economy) numbers. Consumers often use light trucks and SUVs in applications such as prolonged towing at highway speeds, resulting in heavy loading and/or high operating temperatures in the axle. These conditions require superior axle lubricant protection, often provided by choosing a higher viscosity fluid (e.g., SAE 75W-140). Traditionally, the choice of these higher viscosity fluids for enhanced durability performance often results in reduced city-highway efficiency. This paper will describe the use of controlled axle dynamometer laboratory testing methods to develop fluids that maximize both fuel efficiency and durability performance across the wide spectrum of the new proposed viscosity classifications.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Vehicle Life

2005-10-24
2005-01-3860
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has challenged the original equipment manufacturers' (OEM) ability to meet the Corporate Average Fuel Economy (CAFE) specifications due to the increased contribution of these vehicle classes on fleet averages. The need for improved fuel economy is also a global issue due to the relationship of reduced fuel consumption to reduced CO2 emissions. Vehicle manufacturers are challenged to match the proper fluid with the application to provide the required durability protection while maximizing fuel efficiency. Recent new viscosity classifications outlined under SAE J306 aid in more tightly defining options for lubricant choice for a given application. Changes to the SAE J306 viscosity classification define new intermediate viscosity grades, SAE 110 and SAE 190.
Technical Paper

Experimental Analysis of Bending Stresses on the Crankshaft in a V-Type Six-Cylinder Diesel Engine

2005-05-16
2005-01-2488
Engine vibration is a great disadvantage of a V-type six-cylinder engine because ignition does not occur at regular intervals. The engine achieves ignition at regular intervals by having a crank pin offset crankshaft. The shape of the crank pin offset crankshaft is so complex that the location of the crank pin on which bending stress concentrates cannot be obtained easily. This paper reports on the mechanism that generates bending stresses on the crank pin, and discusses the location at which the maximum bending stress is generated with crank pin offset crankshaft.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
X