Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Technical Paper

Automated Steering Controller for Vehicle Testing

Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Effects of Loading on Vehicle Handling

This paper explores the effects of changes in vehicle loading on vehicle inertial properties (center-of-gravity location and moments of inertia values) and handling responses. The motivation for the work is to gain better understanding of the importance vehicle loading has in regard to vehicle safety. A computer simulation is used to predict the understeer changes for three different vehicles under three loading conditions. An extension of this loading study includes the effects of moving occupants, which are modeled for inclusion in the simulation. A two-mass model for occupants/cargo, with lateral translational and rotational degrees of freedom, has been developed and is included in the full vehicle model. Using the simulation, the effects that moving occupants have on vehicle dynamics are studied.