Refine Your Search

Topic

Author

Search Results

Technical Paper

Whirl Analysis of an Overhung Disk Shaft System Mounted on Non-rigid Bearings

2022-03-29
2022-01-0607
Eigenvalues of a simple rotating flexible disk-shaft system are obtained using different methods. The shaft is supported radially by non-rigid bearings, while the disk is situated at one end of the shaft. Eigenvalues from a finite element and a multi-body dynamic tool are compared against an established analytical formulation. The Campbell diagram based on natural frequencies obtained from the tools differ from the analytical values because of oversimplification in the analytical model. Later, detailed whirl analysis is performed using AVL Excite multi-body tool that includes understanding forward and reverse whirls in absolute and relative coordinate systems and their relationships. Responses to periodic force and base excitations at a constant rotational speed of the shaft are obtained and a modified Campbell diagram based on this is developed. Whirl of the center of the disk is plotted as an orbital or phase plot and its rotational direction noted.
Technical Paper

The Mechanism of Spur Gear Tooth Profile Deformation Due to Interference-Fit Assembly and the Resultant Effects on Transmission Error, Bending Stress, and Tip Diameter and Its Sensitivity to Gear Geometry

2022-03-29
2022-01-0608
Gear profile deviation is the difference in gear tooth profile from the ideal involute geometry. There are many causes that result in the deviation. Deflection under load, manufacturing, and thermal effects are some of the well-known causes that have been reported to cause deviation of the gear tooth profile. The profile deviation caused by gear tooth profile deformation due to interference-fit assembly has not been discussed previously. Engine timing gear trains, transmission gearboxes, and wind turbine gearboxes are known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the mechanism of tooth profile deformation due to the interference-fit assembly in gear trains. A new analytical method to calculate the profile slope deviation change due to interference-assembly of parallel axis spur gears is presented.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

High-Fidelity Modeling and Prediction of Hood Buffeting of Trailing Automobiles

2020-03-10
2020-01-5038
The importance of fluid-structure interaction (FSI) is of increasing concern in automotive design criteria as automobile hoods become lighter and thinner. This work focuses on computational simulation and analysis of automobile hoods under unsteady aerodynamic loads encountered at typical highway conditions while trailing another vehicle. These driving conditions can cause significant hood vibrations due to the unsteady loads caused by the vortex shedding from the leading vehicle. The study is carried out using coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) codes. The main goal of this work is to characterize the importance of fluid modeling fidelity to hood buffeting response by comparing fluid and structural responses using both Reynolds-Averaged Navier-Stokes (RANS) and detached eddy simulation (DES) approaches. Results are presented for a sedan trailing another sedan.
Technical Paper

Development of an Analysis Program to Predict Efficiency of Automotive Power Transmission and Its Applications

2018-04-03
2018-01-0398
Prediction of power efficiency of gear boxes has become an increasingly important research topic since fuel economy requirements for passenger vehicles are more stringent, due to not only fuel cost but also environmental regulations. Under this circumstance, the automotive industry is dedicatedly focusing on developing a highly efficient gear box. Thus, the analysis of power efficiency of gear box should be performed to have a transmission that is highly efficient as much as possible at the beginning of design stage. In this study, a program is developed to analyze the efficiency of an entire gearbox, considering all components’ losses such as gear mesh, wet clutches, bearings, oil pump and so on. The analytical models are based on the formulations of each component power loss model which has been developed and published in many existing papers. The program includes power flow analysis of both a parallel gear-train and a planetary gear-train.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Effect of the Tooth Surface Waviness on the Dynamics and Structure-Borne Noise of a Spur Gear Pair

2013-05-13
2013-01-1877
This article studies the effects of tooth surface waviness and sliding friction on the dynamics and radiated structure-borne noise of a spur gear pair. This study is conducted using an improved gear dynamics model while taking into account the sliding frictional contact between meshing teeth. An analytical six-degree-of-freedom (6DOF) linear time varying (LTV) model is developed to predict system responses and bearing forces. The time varying mesh stiffness is calculated using a gear contact mechanics code. A Coulomb friction model is used to calculate the sliding frictional forces. Experimental measurements of partial pressure to acceleration transfer functions are used to calculate the radiated structure-borne noise level. The roles of various time-varying parameters on gear dynamics are analyzed (for a specific example case), and the predictions from the analytical model are compared with prior literature.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

2013-05-13
2013-01-1904
The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Technical Paper

Testing and Modeling of Elevator Door Retention During Hallway Applied Lateral Loads

2009-06-09
2009-01-2273
Most do not consider there to be a risk in pushing on, bumping into or falling against an elevator door from the hallway side. However, the lack of the elevator cars presence alone, and the potential for severe injury or even death make this seemingly mundane situation potentially critical. Standards exist relative to such situations, and past and current designs attempt to account for this possibility, still people get injured interacting with these doors every year. In order to evaluate a real-world elevator door system's ability to withstand the quasi-static and impactive loads that can be placed on it by the general public during its life, both intentionally and unintentionally, a predictive tool is needed. This work represents the combination of empirical laboratory testing and numerical modeling of a typical elevator door system exposed to quasi-static and dynamic loading.
Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Nonlinear Modeling of an Electromagnetic Valve Actuator

2006-04-03
2006-01-0043
This paper presents the modeling of an Electromagnetic Valve Actuator (EMV). A nonlinear model is formulated and presented that takes into account secondary nonlinearities like hysteresis, saturation, bounce and mutual inductance. The uniqueness of the model is contained in the method used in modeling hysteresis, saturation and mutual inductance. Theoretical and experimental methods for identifying parameters of the model are presented. The nonlinear model is experimentally validated. Simulation and experimental results are presented for an EMV designed and built in our laboratory. The experimental results show that sensorless estimation could be a possible solution for position control.
Technical Paper

MADYMO Modeling of the IHRA Head-form Impactor

2005-06-14
2005-01-2740
The International Harmonization Research Activities Pedestrian Safety Working Group (IHRA PSWG) has proposed design requirements for two head-forms for vehicle hood (bonnet) impact testing. This paper discusses the development of MADYMO models representing the IHRA adult and child head-forms, validation of the models against laboratory drop tests, and assessment of the effect of IHRA geometric and mass constraints on the model response by conducting a parameter sensitivity analysis. The models consist of a multibody rigid sphere covered with a finite element modeled vinyl skin. The most important part in developing the MADYMO head-form models was to experimentally determine the material properties of the energy-absorbing portion of the head-form (vinyl skin) and incorporate these properties into MADYMO using a suitable material model. Three material models (linear isotropic, viscoelastic, hyperelastic) were examined.
Technical Paper

Design of a Hybrid Exhaust Silencing System for a Production Engine

2005-05-16
2005-01-2349
A prototype hybrid exhaust silencing system consisting of dissipative and reactive components is designed based on the boundary element method (BEM) with a specific emphasis on its acoustic performance as evaluated relative to a production system. The outer dimensions of the prototype system are comparable to its production counterpart, which has two silencers connected by a pipe. The predicted transmission loss by BEM for the prototype is compared with the experimental results in an impedance tube for both the prototype and production hardware, providing a design guidance for the former. The sound pressure levels measured at the tailpipe exit during the engine ramp-up experiments in a dynamometer laboratory are presented to compare the two systems, providing the final assessment.
X