Refine Your Search

Topic

Author

Search Results

Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Energy-Optimal Allocation of a Heterogeneous Delivery Fleet in a Dynamic Network of Distribution and Fulfillment Centers

2024-04-09
2024-01-2448
This paper presents an energy-optimal plan for the allocation of a heterogeneous fleet of delivery vehicles in a dynamic network of multiple distribution centers and fulfillment centers. Each distribution center with a heterogeneous fleet of delivery vehicles is considered as a hub connected with the fulfillment centers through the routes as spokes. The goal is to minimize the overall energy consumption of the fleet while meeting the demand of each of the fulfillment centers. To achieve this goal, the problem is divided into two sub-problems that are solved in a hierarchical way. Firstly, for each spoke, the optimal number of vehicles to be allocated from each hub is determined. Secondly, given the number of allocated delivery vehicles from a hub for each spoke, the optimal selection of vehicle type from the available heterogeneous fleet at the hub is done for each of spokes based on the energy requirement and the energy efficiency of the spoke under consideration.
Technical Paper

Deep Reinforcement Learning Based Collision Avoidance of Automated Driving Agent

2024-04-09
2024-01-2556
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically.
Technical Paper

Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

2021-04-06
2021-01-0111
Deployment of autonomous vehicles requires an extensive evaluation of developed control, perception, and localization algorithms. Therefore, increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LiDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible.
Technical Paper

Simulation Framework for Testing Autonomous Vehicles in a School for the Blind Campus

2021-04-06
2021-01-0118
With the advent of increasing autonomous vehicles on public roads, the safety of vulnerable road users such as pedestrians, cyclists, etc. has never been more important. These especially include Blind or Visually Impaired (BVI) pedestrians who face difficulty in making confident decisions in road crossings without the help of accessible pedestrian signals (APS). This paper addresses some of the safety measures that can be taken to improve and assess the safety of BVI pedestrians in a controlled environment like a BVI school campus where autonomous vehicles are operated. The majority of research on autonomous vehicle safety does not consider the edge cases of encounters with BVI pedestrians. Based on this motivation, requirements and characteristics of Non-BVI and BVI pedestrians have been stated along with the motion models used to predict their future movements. Existing tools based on Bayesian multi-model filters were used for pedestrian tracking and motion predictions.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Technical Paper

Environmental Traffic Modeling and Simulation SIL Toolset for Electrified Vehicles

2021-04-06
2021-01-0176
With the enhancements in vehicle electrification and autonomous vehicles, Traffic systems are also being improved at an accelerated rate to aid the development of improving fuel economy standards. For this to be possible, it is essential that traffic can be accurately modeled and predicted. The existing toolsets are proprietary and expensive and traffic modeling is not a trivial task due to its dependence on various factors such as place, time, and weather. To address these issues, an entirely open-source Software-In-Loop (SIL) fleet-focused traffic modeling toolset has been developed with the ability to take environmental factors with powertrain-in-the-loop into account leveraging Simulation of Urban Mobility (SUMO) and python. The proposed SIL toolset encompasses the creation of a microscopic traffic distribution which accounts for the usual traffic trends of a typical day.
Journal Article

Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating

2021-04-06
2021-01-0163
Autonomous vehicles are expected to change our lives with significant applications like on-demand, shared autonomous taxi operations. Considering that most vehicles in a fleet are parked and hence idle resources when they are not used, shared on-demand services can utilize them much more efficiently. While ride hailing of autonomous vehicles is still very costly due to the initial investment, a shared autonomous vehicle fleet can lower its long-term cost such that it becomes economically feasible. This requires the Shared Autonomous Vehicles (SAV) in the fleet to be in operation as much as possible. Motivated by these applications, this paper presents a simulation environment to model and simulate shared autonomous vehicles in a geo-fenced urban setting.
Technical Paper

Utilization of ADAS for Improving Performance of Coasting in Neutral

2018-04-03
2018-01-0603
It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than Deceleration Fuel Cut-Off (DFCO) - which exists in all current vehicle powertrain controllers - can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Drive Scenario Generation Based on Metrics for Evaluating an Autonomous Vehicle Controller

2018-04-03
2018-01-0034
An important part of automotive driving assistance systems and autonomous vehicles is speed optimization and traffic flow adaptation. Vehicle sensors and wireless communication with surrounding vehicles and road infrastructure allow for predictive control strategies taking near-future road and traffic information into consideration to improve fuel economy. For the development of autonomous vehicle speed control algorithms, it is imperative that the controller can be evaluated under different realistic driving and traffic conditions. Evaluation in real-life traffic situations is difficult and experimental methods are necessary where similar driving conditions can be reproduced to compare different control strategies. A traditional approach for evaluating vehicle performance, for example fuel consumption, is to use predefined driving cycles including a speed profile the vehicle should follow.
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Journal Article

Development of a Roll Stability Control Model for a Tractor Trailer Vehicle

2009-04-20
2009-01-0451
Heavy trucks are involved in many accidents every year and Electronic Stability Control (ESC) is viewed as a means to help mitigate this problem. ESC systems are designed to reduce the incidence of single vehicle loss of control, which might lead to rollover or jackknife. As the working details and control strategies of commercially available ESC systems are proprietary, a generic model of an ESC system that mimics the basic logical functionality of commercial systems was developed. This paper deals with the study of the working of a commercial ESC system equipped on an actual tractor trailer vehicle. The particular ESC system found on the test vehicle contained both roll stability control (RSC) and yaw stability control (YSC) features. This work focused on the development of a reliable RSC software model, and the integration of it into a full vehicle simulation (TruckSim) of a heavy truck.
Journal Article

Ohio State University Experiences at the DARPA Challenges

2008-10-07
2008-01-2718
The Ohio State University has fielded teams at all three of the DARPA Grand Challenge and DARPA Urban Challenge autonomous vehicle competitions, using three very different vehicle platforms. In this paper we present our experiences in these competitions, comparing and contrasting the different requirements, strategies, tasks, and vehicles developed for each challenge. We will discuss vehicle control and actuation, sensors, sensor interpretation, planning, behavior, and control generation. We will also discuss lessons learned from the engineering and implementation process for these three vehicles.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
X