Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

Investigation into Various Strategies to Achieve Stable Ammonia Combustion in a Spark-Ignition Engine

2023-08-28
2023-24-0040
Ammonia (NH3) is a carbon-free fuel, which could partially or completely eliminate hydrocarbon (HC) fuel demand. Using ammonia directly as a fuel has some challenges due to its low burning speed and low flammability range, which generates unstable combustion inside the combustion chamber. This study investigated the effect of two different compression ratios (CRs) of 10.5 and 12.5 on the performance of ammonia combustion by using a conventional single spark-ignition (SI) approach. It was found that at a lower CR of 10.5, the combustion was unstable even at advanced spark timing (ST) due to poor combustion characteristics of ammonia. However, increasing the CR to 12.5 improved the engine performance significantly with lower cyclic variations. In addition, this research work also observed the effect of multiple spark ignition strategies on pure ammonia combustion and compared it with the conventional SI approach for the same operating conditions.
Technical Paper

A Three-Dimensional Flame Reconstruction Method for SI Combustion Based on Two-Dimensional Images and Geometry Model

2022-03-29
2022-01-0431
A feasible method was developed to reconstruct the three-dimensional flame surface of SI combustion based on 2D images. A double-window constant volume vessel was designed to simultaneously obtain the side and bottom images of the flame. The flame front was reconstructed based on 2D images with a slicing model, in which the flame characteristics were derived by slicing flame contour modeling and flame-piston collision area analysis. The flame irregularity and anisotropy were also analyzed. Two different principles were used to build the slicing model, the ellipse hypothesis modeling and deep learning modeling, in which the ellipse hypothesis modeling was applied to reconstruct the flame in the optical SI engine. And the reconstruction results were analyzed and discussed. The reconstruction results show that part of the wrinkled and folded structure of the flame front in SI engines can be revealed based on the bottom view image.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Technical Paper

Effects on Cycle-to-Cycle Variations and Knocking Combustion of Turbulent Jet Ignition (TJI) with a Small Volume Pre-Chamber

2020-04-14
2020-01-1119
Turbulent jet ignition (TJI) has the advantages of improving burning rates and expanding lean burn limitations of gasoline engines. Based on a single cylinder engine, combustion process with different ignition methods, including single spark ignition, twin spark ignition, one-hole TJI and seven-hole TJI, are studied in this work. Experiments are carried out under conditions with different air/fuel equivalence ratios and different engine loads. Results show that the cycle-to-cycle variations of TJI combustion, which is evaluated by coefficient of variations (CoV) of IMEP and CoV of peak pressure, are obviously reduced due to the fast burning rate induced by the jet flame, and one-hole TJI combustion has the best combustion stability, especially for reducing the CoV of peak pressure.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Technical Paper

Experimental Study on Combustion Characteristics of Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions

2018-04-03
2018-01-1140
Methane as an attractive alternative fuel offers the most potential in clean combustion and low CO2 emissions. In this work, combustion characteristics of methane/gasoline dual-fuel were investigated in a spark-ignited engine with port-injection of methane and direct-injection of gasoline, allowing for variations in methane addition and excess air coefficient. Engine experimental results showed that under low load conditions, as methane mass rate was raised, there was a promotion in methane/gasoline dual-fuel combustion, and this became more obvious at lean conditions. Similar observations were also obtained when the engine was operated at intermediate load conditions, but a prolonged combustion duration was found with the methane addition. Further analysis showed that the promotion of methane/gasoline dual-fuel combustion with methane addition mainly occurred in the early stage of combustion, especially for lean conditions.
Technical Paper

Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism

2016-04-05
2016-01-0690
In the present study, we developed a reduced TRF-PAH chemical reaction mechanism consisted of iso-octane, n-heptane and toluene as gasoline surrogate fuels for GDI (gasoline direct injection) spark ignition engine combustion simulation. The reduced mechanism consists of 85 species and 232 reactions including 17 species and 40 reactions related to the PAHs (polycyclic aromatic hydrocarbons) formation. The present mechanism was validated for extensive validations with experimental ignition delay times in shock tubes and laminar flame speeds in flat flame adiabatic burner for gasoline/air and TRF/air mixtures under various pressures, temperatures and equivalence ratios related to engine conditions. Good agreement was achieved for most of the measurement. Mole fraction profiles of PAHs for n-heptane flame were also simulated and the experimental trends were reproduced well. The vapor-phase and particulate-bound PAHs existed in GDI engine exhaust were sampled and analyzed by GC-MS.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Effect of the Swirl Control Valve on the In-Cylinder Air Motion in a Four-Valve SI Engine

2000-06-19
2000-01-2058
The effect of the Swirl Control Valve (SCV) on the in-cylinder flow characteristics was studied using LDA measurement in a single cylinder four-valve spark ignition engine with a SCV. Mean velocity, root-mean-square (rms) velocity fluctuation, and frequency structure of the velocity fluctuation were analyzed to illustrate flow features under the SCV open and closed conditions. The results show that when the SCV is open, large-scale flow structure in the cylinder is mainly tumble vortex, which will distort and break up during the late stage of the compression stroke. The rms velocity fluctuation increases during the compression process and reaches its maximum at certain crank angle before TDC. Larger scale eddies and lower frequency structures in the flow field become more near the end of compression process due to breakup of the tumble. The rms velocity fluctuation in the combustion chamber is roughly uniform at the end of the compression process.
X