Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

A New Technique for the Measurement of Sauter Mean Diameter of Droplets in Unsteady Dense Sprays

1989-02-01
890316
A new technique is developed for the in-situ measurement of Sauter mean diameter of droplets in non-evaporating transient dense sprays. This method analyzes the image of a shadowpicture of a spray based on the incident light extinction principle, and allows the sizing of Sauter mean diameter of whole droplets in a transient spray with any shape. In addition, this method allows the measurement of the local droplet size in a quasi-steady region of an axisymmetric spray if the conservation equations regarding mass and momentum are included in the calculation and data analysis. A calibration was carried out using glass beads as test particles: this was proved to have an accuracy of Sauter mean diameter measurement within 10%, on average. Applications of the new technique to both diesel and gasoline (EFI) sprays have been made.
Technical Paper

Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames

1987-09-01
871610
The characteristics of diesel spray and flame in a quiescent atmosphere were studied as a function of injection pressure ranging from 30 to 110 MPa. Measurements included the spray form and Sauter mean diameter of a non-evaporating spray, the liquid phase penetration of an evaporating spray and the visualization of sooting zone in a flame. Experimental results show that high pressure injection improves the atomization and air entrainment of non-evaporating spray and that the liquid phase penetration of evaporating spray is hardly affected by injection pressure, demonstrating a promotion of evaporation with injection pressure. Visualization of the sooting zone in a flame made it clear that high pressure injection is advantageous in reducing soot formation and shortening the combustion duration.
X