Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.