Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Effects of Different Driving Behavior during Actual Road Driving on Ammonia Emissions from Gasoline Vehicles

2023-09-29
2023-32-0095
Three-way catalysts are used in gasoline vehicles for simultaneous purifying nitrogen oxide, carbon monoxide, and hydrocarbon in recent years. However, the reduction of ammonia emission generated in the three-way catalyst is pressing issue. In EURO 7, ammonia will also be subject to the Real Driving Emissions regulation, and its emissions must be reduced. Previous studies have shown that ammonia emissions are higher under fuel-rich conditions, suggesting that differences in driving behavior have a significant impact on ammonia emissions in real-world driving, which includes various driving environments. In this study, driving tests were conducted on a direct- injection gasoline vehicle equipped with a three-way catalyst and Portable Emission Measurement System and Sensor-based Emission Measurement System to investigate the actual ammonia emissions on actual roads.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
Technical Paper

NOx Reduction with the HC-SCR System over Cu/Zeolite Based Catalysts

2015-09-01
2015-01-2012
Diesel engine is one the effective solutions for reducing CO2 and recognized as a leading candidate for mitigating global warming. To comply with increasingly stringent emission standards, all diesel engines require some sort of NOx control systems such as selective catalytic reduction (SCR) systems. The SCR catalyst for reducing NOx from diesel engines is classified into two groups, urea-SCR and HC-SCR catalyst, respectively. Although the urea-SCR catalyst is widely recognized as promising de-NOx technology in respect to the NOx conversion efficiency, it have some outstanding issues such as ammonia slip, urea injection, storage space, freezing and some infrastructures for supplying urea water solutions. In an attempt to overcome the inherent shortcoming of existing urea-SCR catalyst, hydrocarbons have been considered as alternative reducing agents for SCR process, instead of NH3.
Technical Paper

Comparison Study on Fuel Properties of Biodiesel from Jatropha, Palm and Petroleum Based Diesel Fuel

2014-03-24
2014-01-2017
The increase of air pollution and global warming is a threat for human life. Besides, the price of petroleum is increasing rapidly and the resources are diminishing. This obliged scientists and engineers to look for alternative sources of energy, which are cleaner and more sustainable. Biodiesel, defined as mono-alkyls of esters from vegetable oils and animals fat, is a cleaner renewable fuel and has been considered as the best alternative for petroleum based diesel fuel hence it can be used in any compression ignition engines without any significant modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions due to their higher content of oxygen. The produce less soot and hence the feed stuck is plant it will regenerate the CO2 by the photosynthesis which ensures the renewability and reduces global warming.
Technical Paper

Heat Engine with Reciprocating Super-Adiabatic Combustion in Porous Media

1997-02-24
970201
A one-dimensional numerical calculation has been performed on a new reciprocating heat engine proposed on the basis of super-adiabatic combustion in porous media. The system consists of two pistons and a thin porous medium in a cylinder; one being a displacer piston and the other a power piston. These create reciprocating motions with a phase relation angle. By means of the reciprocating flow system, the residual combustion gas enthalpy is effectively regenerated to induce enthalpy increase in the mixture through the porous medium. Due to heat recirculation, the thermal efficiency reaches to 58% under the condition of the compression ratio of 2.3.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
X