Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Strain Rate Effect on Forming Limit Diagram for Advanced High Strength Steels

2014-04-01
2014-01-0993
The Forming limit diagram (FLD) is a powerful tool for describing the formability of sheet materials in the automobile industry, which provides fundamental data for die design and Finite Element (FE) simulation. However, traditional FLD testing is typically conducted at quasi-static strain rates from 0.001/s to 0.01/s, which are much lower than the industrial stamping process with strain rates about 1-10/s. In this research, FLDs at various punch speeds (from 1mm/s to 100mm/s or 120mm/s) were obtained for three kinds of AHSS, Quenched and Partitioned steel, Dual Phase 980 and Dual Phase 590 and three kinds of conventional steels, Low Alloy High Strength steel, Bake Hardening steel and IF steel. The results show that FLDs at a typical industrial stamping speed (100mm/s or 120mm/s) are considerably lower than the quasi-static test speed for the Advanced High Strength Steels (AHSS).
Technical Paper

Evaluation of Global and Local Deformation Behaviors of Similar Laser Welded Joints using Digital Image Correlation

2014-04-01
2014-01-0832
Similar laser welded blanks with same material and same gauge have been extensive applied in automobile body for improving the material utilization and extending maximum coil size. It is known that, for TWBs with dissimilar material and thicknesses, the difference of material properties and/or thickness of the welded blanks, change of the material properties in the weld seam and heat-affected zones (HAZ) as well as location and orientation of the weld seam are reasons for reduced formability. However, the plastic deformation capacity of TWBs is reduced even when the material and thickness are the same. The aim of this paper is to evaluate the deformation behaviors of similar laser welded joints. Uniaxial tensile of five laser welded joints, with 90°,60°,45°,30°and 0°weld orientations, were tested by using optical measurement-DIC (Digital Image Correlation). Strain /strain ratio distribution and evolution of each joint was analyzed and compared with base material.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
X