Refine Your Search

Topic

Search Results

Technical Paper

Coordinated Control under Transitional Conditions in Hybrid Braking of Electric Vehicle

2018-10-05
2018-01-1869
In the hybrid brake system of electric vehicle, due to the limitation of the motor braking force when the motor is at high speed and the failure of the regenerative braking force when the motor is at low speed, there are three transitional conditions in hybrid braking: the hydraulic brake system intervenes the braking, the hydraulic brake system withdraws the braking and the regenerative braking force withdraws the braking. Due to the response speed of the hydraulic system is slower than that of the motor, there is a large braking impact (the derivative of braking deceleration) in the transitional conditions of hybrid braking, which deteriorates the smoothness and comfort in braking. Aiming at the impact caused by the poor cooperation between the hydraulic braking force and the motor braking force, a coordinated strategy of double closed-loop feedback and motor force correction is proposed in this paper.
Technical Paper

Open-Loop Characteristics Analysis and Control of High Speed On-Off Valve

2018-10-05
2018-01-1868
In the process of ABS control, the Anti-lock braking system (ABS) of the vehicle adjusts the wheel cylinder brake pressure through the hydraulic actuator so as to control the movement of the wheel. The high-speed on-off valve (HSV) is the key components of the Anti-lock braking system. HSV affects the performance of the hydraulic actuator and the valve response characteristics affects the Anti-lock braking system pressure response as well as braking effect. In this paper, the electromagnetic field theory and flow field theory of HSV are analyzed, and simulation analysis of electromagnetic field characteristics of HSV is done by ANSYS. Combined with the ANSYS analysis results, a precise physical model of HSV is constructed in AMESim. Meanwhile, the valve response characteristics are analyzed. Moreover, the influence of different wheel cylinder diameter and PWM carrier frequency on hydraulic braking force characteristics are analyzed.
Technical Paper

Correlation of Objective and Subjective Evaluation in Automotive Brake Pedal Feel

2018-10-05
2018-01-1889
In order to establish the correlation between objective and subjective evaluation of brake pedal feel for passenger cars, road tests of brake pedal feel were carried out and an evaluation method was proposed. In the road tests, subjective scores and objective measurements were obtained under the conditions of uniform and emergency braking. The objective measurements include pedal preload, low deceleration pedal force and travel, moderate deceleration pedal force and travel, brake response time and brake linearity. Using the theory of analytic hierarchy process (AHP), the design process of the evaluation method was established. Key setups including the hierarchical structure model, the judgement matrix and the score calculation method of objective measurements were described in detail. Then, the correlation between subjective and objective scores was analyzed. It can be concluded that the evaluation method is effective and it can be applied to brake pedal feel assessment and adjustment.
Technical Paper

Study on Brake Disc Dynamics under Asymmetric Thermal Loads

2018-10-05
2018-01-1901
In order to explore the generation mechanism of hot-spots on the automotive brake disc, disc tests under non-frictional thermal loads are carried out on the brake dynamometer test bench. In the tests, the oxy-acetylene flame is used as the heat source, and the distribution characteristics of the disc temperature and displacement are measured and analyzed. To confirm the mechanism of the disc deformation, a disc thermal buckling model using finite element method is established, and the key factors for the disc thermal buckling under thermal loads are further analyzed. It is found that the temperature circumferential gradient is small but the temperature radial gradient is large. The disc presents waviness deformation mode with 5th order in circumferential direction, which is the first thermal buckling mode of the disc. A method using spatial frequency spectrum has been proposed to find the critical time and load of thermal buckling.
Technical Paper

Study on Lane Change Trajectory Planning Considering of Driver Characteristics

2018-08-07
2018-01-1627
Automatic lane change of intelligent vehicles is a complex process. Besides of safety, feelings of the driver and passengers during the lane change are also very important. In this paper, a lane change trajectory planner is designed to generate an ideal collision-free trajectory to satisfy the driver’s preference. Various lane changing modes, gentle lane change, general lane change, radical lane change and personalized lane change, are designed to meet the needs of different passengers on vehicles simultaneously. In this paper, the condition of the two-lane change is studied. One vehicle is in front of the ego vehicle at the same lane and one is at the rear of the ego vehicle at the target lane. A trajectory planning method is then established based on constant speed offset and sine curve, vehicle distances and speed difference, etc. The key factors which can reflect drivers’ lane change characteristics are then acquired.
Technical Paper

A Localization System for Autonomous Driving: Global and Local Location Matching Based on Mono-SLAM

2018-08-07
2018-01-1610
The utilization of the SLAM (Simultaneous Localization and Mapping) technique was extended from the robotics to the autonomous vehicles for achieving the positioning. However, SLAM cannot obtain the global position of the vehicle but a relative one to the start. For sake of this, a fast and accurate system was proposed to obtain both the local position and the global position of vehicles based on mono-SLAM which realized the SLAM by using monocular camera with a lower cost and power consumption. Firstly, the rough latitude and longitude of current position was obtained by using common GPS without differential signal. Then, the Mono-SLAM operated on the consecutive video frames to generate the localization and local trajectory and its accuracy was further improved by utilizing the IMU information. After that, a piece of Map centered in the rough position obtained by common GPS was downloaded from the Open Street Map.
Technical Paper

System Design and Model of a 3D 79 GHz High Resolution Ultra-Wide Band Millimeter-Wave Imaging Automotive Radar

2018-08-07
2018-01-1615
Automotive radar is an important environment perception sensor for advance driving assistance system. It can detect objects around the vehicle with high accuracy and it works in all bad weathers. For traditional automotive radar, it cannot measure the objects’ height. Thus, a manhole cover on the road surface or a guideboard high above the road would be taken erroneously as a non-moving car. In such cases, the adaptive cruise system would decelerate or stop the vehicle erroneously and make the driver uncomfortable. A 3D automotive radar with two-dimensional electronic scanning can measure the targets’ height as well as the targets’ azimuth angle. This paper presents a 79 GHz ultra-wide band automotive 3D imaging radar. Due to the 4 GHz wide bandwidth, the range resolution of this radar can be as small as 3.75 cm.
Technical Paper

UWB Location Algorithm Based on BP Neural Network

2018-08-07
2018-01-1605
In order to solve the problem that in the traditional trilateral positioning algorithm, the final positioning error is large when there is a certain error in the measured three-sided distance, a UWB positioning algorithm based on Back Propagation (BP) neural network is proposed. The algorithm utilizes the fast learning characteristic and the ability of approximating any non-linear mapping of neural network, and realizes the location of the mobile label through the TOA measurement value provided by the base station and the BP neural network. By comparing the traditional trilateral positioning algorithm, the BP neural network algorithm based on four distance inputs and the BP neural network algorithm based on four distance inputs with trilateral positioning coordinates, it can be seen that the positioning error of traditional trilateral positioning algorithm is 30 cm, and the positioning error of the positioning algorithm based on the BP neural network proposed in this paper is 10 cm.
Technical Paper

Semantic Segmentation for Traffic Scene Understanding Based on Mobile Networks

2018-08-07
2018-01-1600
Real-time and reliable perception of the surrounding environment is an important prerequisite for advanced driving assistance system (ADAS) and automatic driving. And vision-based detection plays a significant role in environment perception for automatic vehicles. Although deep convolutional neural networks enable efficient recognition of various objects, it has difficulty in accurately detecting special vehicles, rocks, road pile, construction site, fence and so on. In this work, we address the task of traffic scene understanding with semantic image segmentation. Both driveable area and the classification of object can be attained from the segmentation result. First, we define 29 classes of objects in traffic scenarios with different labels and modify the Deeplab V2 network. Then in order to reduce the running time, MobileNet architecture is applied to generate the feature map instead of the original models.
Technical Paper

Modified Car Following and Lane Changing Simulations Model for Autonomous Vehicle on Highway

2018-08-07
2018-01-1647
Being one of the most simple and basic driving scenarios, highway scenario can be one of the first scenarios to achieve autonomous driving. Both car following (CF) and lane changing (LC) are the most basic and frequent maneuver during highway driving tasks, and therefore become two key issues to focus on in recent researches about autonomous vehicle (AV). Different from conventional CF and LC researches that attach much importance to the character, psychology, perception ability, and driving experience of human drivers, more timely and accurate reactions based on fast perception and communication technology as well as the automatic actuator are hypotheses for this research. Moreover, based on these hypotheses, a modified intelligent driver model (MIDM) is proposed for AVs’ following behavior to alleviate the fluctuations caused by lane changing behaviors.
Technical Paper

Precise Steering Angle Control of Lane Change Assist System

2017-09-23
2017-01-2002
After obtaining the optimal trajectory through the lane change decision and trajectory planning, the last key technology for the automatic lane change assist system is to carry out the precise and rapid steering actuation according to the front wheel angle demand. Therefore, an automatic lane change system model including a BLDCM (brushless DC motor) model, a steering system model and a vehicle dynamics model is first established in this paper. Electromagnetic characteristics of the motor, the moment of the inertia and viscous friction etc. are considered in these models. Then, a SMC (Sliding Mode Control) algorithm for the steering system is designed to follow the steering angle input. The control torque of the steering motor is obtained through the system model according to steering angle demand. After that, the control current is calculated considering of electromagnetic characteristics of the BLDCM. Debugging and optimization of the control algorithm are done through simulations.
Technical Paper

The Trajectory Planning of the Lane Change Assist Based on the Model Predictive Control with Multi-Objective

2017-09-23
2017-01-2004
The automatic lane change assist system is an intelligent driving assistance technology oriented to traffic safety, which requires trajectory planning of the lane change maneuver based on the lane change decision. A typical scene of lane change for overtaking is selected, where the front vehicle in the same lane and the rear vehicle in the left lane are deemed to be potential dangerous vehicles through the lane change. Lane change trajectory equation is first established according to the general law of steering wheel angle through lane changes. Based on the relative position, velocity and acceleration information of the dangerous vehicles and the lane change vehicle, motions of these surrounding dangerous vehicles are predicted. At the same time, a multi-objective optimization function is established based on the relative longitudinal safety boundary. The objectives are the minimum safety distance, the lane change time and the front wheel angle.
Technical Paper

A New Method of Target Detection Based on Autonomous Radar and Camera Data Fusion

2017-09-23
2017-01-1977
Vehicle and pedestrian detection technology is the most important part of advanced driving assistance system (ADAS) and automatic driving. The fusion of millimeter wave radar and camera is an important trend to enhance the environmental perception performance. In this paper, we propose a method of vehicle and pedestrian detection based on millimeter wave radar and camera. Moreover, the proposed method complete the detection of vehicle and pedestrian based on dynamic region generated by the radar data and sliding window. First, the radar target information is mapped to the image by means of coordinate transformation. Then by analyzing the scene, we obtain the sliding windows. Next, the sliding windows are detected by HOG features and SVM classifier in a rough detect. Then using the match function to confirm the target. Finally detecting the windows in a precision detection and merging the detecting windows. The target detection process is carried out in the following three steps.
Journal Article

Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere

2016-04-05
2016-01-0889
Downsizing gasoline direct injection engine with turbo boost technology is the main trend for gasoline engine. However, with engine downsizing and ever increasing of power output, a new abnormal phenomenon, known as pre-ignition or super knock, occurs in turbocharged engines. Pre-ignition will cause very high in-cylinder pressure and high oscillations. In some circumstances, one cycle of severe pre-ignition may damage the piston or spark plug, which has a severe influence on engine performance and service life. So pre-ignition has raised lots of attention in both industry and academic society. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. The auto-ignition characteristics of different lubricants are studied. This paper focuses on the ignition delay of different lubricants in Controllable Active Thermo-Atmosphere (CATA) combustion system.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Control Optimization of a Compound Power-Split Hybrid Transmission for Electric Drive

2015-04-14
2015-01-1214
A novel compound power-split hybrid transmission based on a modified Ravigneaux gear set is presented. The equivalent lever diagrams are used to investigate the electric operating modes for the hybrid powertrain, and then its dynamic and kinematic characteristics as well as efficiency characteristics are described in equations. A brake clutch mounted on the carrier shaft is proposed to enhance the electric driving efficiency for the hybrid transmission. Three types of electric operating mode are analyzed by the simplified combined lever diagrams and the system efficiency and torque characteristics for these electric operating modes are compared. A major influence on output torque of the hybrid transmission derived from the torque capability of motors and brake clutch is depicted.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

Effect of Water Injection Temperature on Characteristics of Combustion and Emissions for Internal Combustion Rankine Cycle Engine

2014-10-13
2014-01-2600
The present work discusses a novel oxyfuel combustion method named internal combustion rankine cycle (ICRC) used in reciprocating engines. Water is heated up through heat exchanger by exhaust gas and engine cooling system, and then injected into the cylinder near top dead center to control the combustion temperature and in-cylinder pressure rise rate, meanwhile to enhance the thermo efficiency and work of the combustion cycle. That is because injected water increases the mass of the working fluid inside the cylinder, and can make use of the combustion heat more effectively. Waste heat carried away by engine coolant and exhaust gas can be recovered and utilized in this way. This study investigates the effect of water injection temperature on the combustion and emission characteristics of an ICRC engine based on self-designed test bench. The results indicate that both indicated work and thermal efficiency increase significantly due to water injection process.
Technical Paper

Analysis and Design of Dual-Motor Electro-Hydraulic Brake System

2014-09-28
2014-01-2532
In this paper, by analyzing multiple electro-hydraulic brake system schemes in detail, the idea of dual-motor electro-hydraulic brake system is proposed. As a new solution, the dual-motor electro-hydraulic brake system can actively simulate pedal feel, make the most of pedal power (from the driver), and reduce the maximum power output of each active power source remarkably, which is a distinctive innovation compared to most current electro-hydraulic brake systems. Following the proposed concept, a general research thought and method is conceived, and then a dual-motor electro-hydraulic brake system is designed. Finally, the simulation model is set up in AMESim software and its feasibility is simulated and verified.
X