Refine Your Search

Topic

Search Results

Technical Paper

Tracking of Extended Objects with Multiple Three-Dimensional High-Resolution Automotive Millimeter Wave Radar

2019-04-02
2019-01-0122
Estimating the motion state of peripheral targets is a very important part in the environment perception of intelligent vehicles. The accurate estimation of the motion state of the peripheral targets can provide more information for the intelligent vehicle planning module which means the intelligent vehicle is able to anticipate hazards ahead of time. To get the motion state of the target accurately, the target’s range, velocity, orientation angle and yaw rate need to be estimated. Three-dimensional high-resolution automotive millimeter wave radar can measure radial range, radial velocity, azimuth angle and elevation angle about multiple reflections of an extended target. Thus, the three-dimensional range information and three-dimensional velocity information can be obtained. With multiple three-dimensional high-resolution automotive millimeter-wave radar, it is possible to measure information in various directions of a target.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Research on the Model of Safety Boundary Condition Based on Vehicle Intersection Conflict and Collision

2019-04-02
2019-01-0132
Because of the high frequency and serious consequences of traffic accidents in the intersection area, it is of great significance to study the vehicle conflict and collision scenarios of the intersection area. Due to few actual crash accidents occurring in naturalistic driving studies data or field operational tests data, the data of traffic accident database should be also used to analyze the intersection conflict and collision. According to the China Field Operation Test (China-FOT) database and the China in Depth Accident Study (CIDAS) database, the distribution feature of the respective intersection scenario type is obtained from the data analysis. Based on the intersection scenario type, two characters of intersection conflict and collision, the environmental character and the vehicle dynamic character, are used to analyze for the integration process of intersection conflict and collision.
Technical Paper

Experimental Investigation of the Bi-Stable Behavior in the Wake of a Notchback MIRA Model

2019-04-02
2019-01-0663
This paper reports an experimental investigation of the wake flow behind a 1/12 scale notchback MIRA model at Re = UL/ν = 6.9×105 (where U is free-stream velocity, L the length of the model and ν viscosity). Focus is placed on the flow asymmetry over the backlight and decklid. Forty pressure taps are used to map the surface pressure distribution on the backlight and decklid, while the wake topology is investigated by means of 2D Particle Image Velocimetry. The analysis of the instantaneous pressure signals over the notch configuration clearly shows that the pressure presents a bi-stable behavior in the spanwise direction, characterized by the switches between two preferred values, which is not found in the vertical direction.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Technical Paper

Research and Development of an Electromagnetic Actuated Active Suspension

2019-04-02
2019-01-0858
Active suspension could achieve good ride comfort and road holding performance. Traditional active suspension which utilizes air actuator or hydraulic actuator features relatively slow response or high energy consumption. Utilizing Permanent Magnet Synchronous Motor (PMSM) as actuator, the Electromagnetic Actuated Active Suspension (EAAS) benefits quick response and energy harvesting from vibration at the same time. Benchmarked with luxury cars available on the market, design parameters and design boundary are determined. A mechanism includes push bar and bell crank is designed to transfer the rotary motion of PMSM into linear motion of suspension, or verse vice. A prototype of EAAS is built in compromise of limited budget and a test bench is designed and set up. Different from conventional quarter car model, the model of EAAS in this paper is investigated and the total inertial of PMSM, gearbox and suspension control arms are calculated and simplified as an equivalent mass.
Technical Paper

State-of-the-Art and Development Trends of Energy Management Strategies for Intelligent and Connected New Energy Vehicles: A Review

2019-04-02
2019-01-1216
Intelligent and connected vehicle (ICV) and new energy vehicle (NEV) will be two important directions of the automotive technology in the future, and the coordinated development of these two directions reflects relevantly the higher requirements put forward by nowadays society and people. Through the use of intelligent and connected technology (ICT), NEVs can exchange various traffic information data with the outside world (e.g. other running vehicles, road infrastructure, internet, etc.) in real time, which is so-called Vehicle to Everything (V2X). Based on the further analysis of the mutual traffic information, the vehicles can identify the current driving conditions and predict the future driving conditions effectively, which can realize the real time optimization of the energy management strategies (EMSs) of vehicles’ powertrain system, so as to meet the driving requirements of vehicles under different driving conditions.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Technical Paper

Evaluation and Optimization of Driver Steering Override Strategy for LKAS Based on Driver’s Acceptability

2018-08-07
2018-01-1631
In order to satisfy design requirements of Lane Keeping Assistance System (LKAS), a Driver Steering Override (DSO) strategy is necessary for driver’s interaction with the assistance system. The assistance system can be overridden by the strategy in case of lane change, obstacle avoidance and other emergency situations. However, evaluation and optimization of the DSO strategy for LKAS cannot easily be completed quantitatively considering driver’s acceptability. In this research, firstly subjective and objective evaluation experiment is designed. Secondly, correlations between the subjective and the objective evaluation results are established by using regression analysis. Finally, based on the correlations established previously, the optimal performance of DSO strategy is obtained by setting the desired comprehensive evaluation ratings as the optimized goal.
Technical Paper

Critical Driving Scenarios Extraction Optimization Method Based on China-FOT Naturalistic Driving Study Database

2018-08-07
2018-01-1628
Due to the differences in traffic situations and traffic safety laws, standards for extraction of critical driving scenarios (CDSs) vary from different countries and areas around the world. To maintain the characteristic variables under the Chinese typical CDSs, this paper uses the three-layer detection method to extract and detect CDSs in the Natural Driving Data from China-FOT project which executing under the real traffic situation in China. The first layer of detection is mainly based on the feature distributions which deviate from normal driving situations. These distributions associated with speed and longitudinal acceleration/lateral acceleration/yaw rate also quantify the critical levels classification.
Technical Paper

A New Method of Comprehensive Evaluation Research and Application on Vehicle Engine Exhaust System

2018-04-15
2018-01-5011
During current design process of vehicle engine exhaust system, the frequently-used approach mainly concerns an individual component, which usually results in not meeting the overall design requirements or unreasonable design parameters. Here a concept of comprehensive evaluation metrics for vehicle engine exhaust system was established, of which a new weight factor assignment method was proposed, named change rate method, as the core of evaluation system to be especially studied. Taking muffler as an instance, six weight factor assignment schemes were adopted to compare with each other. And the rationality and practicability of the change rate assignment method was verified by the muffler noise experiments. The results show that, the change rate method makes the weight assignment more scientific and rigorous. And the new method can reflect the wishes of designers and completely displays the performance comparison and evaluation between schemes.
Technical Paper

Analysis under Vehicle-Pedalcyclist Risk Scenario Based on Comparison between Real Accident and Naturalistic Driving Data

2018-04-03
2018-01-1048
This paper constructs the Accident Crash Scenarios(ACSs) classification system based on the traffic accident data collected by the traffic management department in a Chinses city from 2013 to 2015. The classification system selects four influenced variables on the basis of Critical Driving Scenarios(CDSs) in Naturalistic Driving Data. The proportions of each variable are analyzed, and all ACSs are divided into 48 scenarios. The highest proportion of nine ACSs are extracted from all 10596 ACSs, and the result shows the ACSs involved Car-Pedalcyclist occupy the top four scenarios, and the scenarios involved intersection situations are worth attention. Pedalcyclists include bicyclists, motorcyclists, tri-cyclists and electric bicyclists. Multivariate Logistic Regression(MLR) analysis is then used to study the ACSs involved the type of Car-Pedalcyclist.
Technical Paper

Study on Test Scenarios of Environment Perception System under Rear-End Collision Risk

2018-04-03
2018-01-1079
The foundation of both advanced driving assistance system(ADAS) and automated driving (AD) is an accurate environment perception system(EPS). However, evaluation and test method of EPS are seldom studied. In this paper, naturalistic driving environment was studied and test scenarios for EPS under rear-end collision risk were proposed accordingly. To describe driving environment, a new concept named environment perception element(EPE) was first proposed in this paper, which refers to all the objects that the EPS must perceive during driving. Typical environment perception elements include weather and light conditions, road features, road markings, traffic signs, traffic lights, other vehicles, pedal cyclists and pedestrians and others. Driving behaviors collected in Shanghai, China were classified and rear-end collision risk scenarios were obtained and described using EPEs. Probability distribution of EPEs was therefore obtained.
Technical Paper

Fault-Tolerant Ability Testing for Automotive Ethernet

2018-04-03
2018-01-0755
With the introduction of BroadR-Reach and time-sensitive networking (TSN), Ethernet has become an option for in-vehicle networks (IVNs). Although it has been used in the IT field for decades, it is a new technology for automotive, and thus requires extensive testing. Current test solutions usually target specifications rather than the in-vehicle environment, which means that some properties are still uncertain for in-vehicle usage (e.g., fault tolerance for shorted or open wires). However, these characteristics must be cleared before applying Ethernet in IVNs, because of stringent vehicular safety requirements. Because CAN is usually used for these environments, automotive Ethernet is expected to have the same or better level of fault tolerance. Both CAN and BroadR-Reach use a single pair of twisted wires for physical media; thus, the traditional fault-tolerance test method can be applied for automotive Ethernet.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

Investigation on Dry-clutch Transmissibility Characteristic for Vehicle Launch Shudder

2018-04-03
2018-01-1225
Vehicle launch shudder is the terminology used in automotive industry to describe severe longitudinal oscillation during clutch engagement under start-up condition. This paper presents and implements detailed investigation for dry-clutch engagement and disengagement process, in order to deeply analyze vehicle launch shudder phenomenon which seriously deteriorates ride comfort. Firstly, diaphragm spring and cushion spring and link strip, which are three elastic components related to dry-clutch engagement and disengagement process in axial direction, are studied for their elastic properties, respectively, to obtain relationship between load and deflection. The elastic properties of these three elastic components are taken into considerations to establish nonlinear relationship between release bearing travel and clutch clamp force.
Technical Paper

Performance Prediction of Automotive Fuel Cell Stack with Genetic Algorithm-BP Neural Network

2018-04-03
2018-01-1313
Fuel cell vehicle commercialization and mass production are challenged by the durability of fuel cells. In order to research the durability of fuel cell stack, it is necessary to carry out the related durability test. The performance prediction of fuel cell stack can be based on a short time durability test result to accurately predict the performance of the fuel cell stack, so it can ensure the timeliness of the test results and reduce the cost of test. In this paper, genetic algorithm-BP neural network (GA-BPNN) is proposed to modeling automotive fuel cell stack to predict the performance of it. Based on the strong global searching ability of genetic algorithm, the initial weights and threshold selection of neural networks are optimized to solve the shortcoming that the random selection of the initial weights and thresholds of BP neural network which can easily lead to the local optimal value.
Technical Paper

A Systematic Scenario Typology for Automated Vehicles Based on China-FOT

2018-04-03
2018-01-0039
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them.
Technical Paper

Evaluation of Shanghai’s Industry Chain of Intelligent and Connected Vehicles Based on AHP Method

2017-09-23
2017-01-1989
Chinese National projects “13th Five Year Plan” and “Made in China 2025” have both put forward a goal of developing Intelligent and Connected Vehicles(ICV). Shanghai is a typical city of automobile industry which spearhead the development of China’s ICV industry. After the adjustment and transition of industrial structure, Shanghai has initially formed the industrialization layout of ICV covering core areas including environmental perception, intelligent decision-making, actuator, human-computer interaction and vehicle integration. However, currently Shanghai is still in the beginning stage and there exists a large gap with world advanced level in both the core technology and marketization. This article is based on former qualitative survey combined with quantitative analysis which uses the Analytic Hierarchy Process(AHP) method to objectively evaluate the status quo and development trend of Shanghai’s ICV.
X