Refine Your Search

Topic

Search Results

Technical Paper

Improved Joint Probabilistic Data Association Multi-target Tracking Algorithm Based on Camera-Radar Fusion

2021-04-15
2021-01-5002
A Joint Probabilistic Data Association (JPDA) multi-objective tracking improvement algorithm based on camera-radar fusion is proposed to address the problems of poor single-sensor tracking performance, unknown target detection probability, and missing valid targets in complex traffic scenarios. First, according to the correlation rule between the target track and the measurement, the correlation probability between the target and the measurement is obtained; then the measurement collection is divided into camera-radar measurement matched target, camera-only measurement matched target, radar-only measurement matched target, and no-match target; and the correlation probability is corrected with different confidence levels to avoid the use of unknown detection probability.
Technical Paper

Novel Research for Energy Management of Plug-In Hybrid Electric Vehicles with Dual Motors Based on Pontryagin’s Minimum Principle Optimized by Reinforcement Learning

2021-04-06
2021-01-0726
The plug-in hybrid electric vehicles with dual-motor and multi-gear structure can realize multiple operation modes such as series, parallel, hybrid, etc. The traditional rule-based energy management strategy mostly selects some of the modes (such as series and parallel) to construct the energy management strategy. Although this method is simple and reliable, it can’t fully exert the full potential of this structure considering both economy and driving performance. Therefore, it is very important to study the algorithm which can exert the maximum potential of the multi-degree-of-freedom structure. In this paper, a new RL-PMP algorithm is proposed, which does not divide the operation modes, and explores the optimal energy allocation strategy to the maximum extent according to the economic and drivability criteria within the allowable range of the characteristics of the power system components.
Technical Paper

Multi-Objective Control of Dynamic Chassis Considering Road Roughness Class Recognition

2021-04-06
2021-01-0322
For the DCC (Dynamic Chassis Control) system, in addition to the requirement of ride and comfort, it is also necessary to consider the requirement of handling and stability, and these two requirements are often not met at the same time. This poses a great challenge to the design of the controller, especially in the face of complex working conditions. In order to solve this problem, this paper proposes a comprehensive DCC controller that considers road roughness class recognition. Firstly, a quarter vehicle model is established, the road surface roughness is calculated from the vertical acceleration of the wheels measured by the sensors. Then we calculate the autocorrelation function and the Fourier transform to estimate the PSD (Power Spectral Density) to get the road roughness class. Then control algorithms are designed for the vertical motion control, roll control and pitch control.
Technical Paper

Three Failure Models for CFRP Composites

2021-04-06
2021-01-0310
Several failure criteria and stiffness degradation laws for composite materials are summarized and compared in terms of precision and convenience of use. The 2D/3D Hashin failure criteria are coupled with the stiffness degradation rules provided by Tan, Tserpes and Zinoviev. Three new failure models including 2D Hashin-Tan, 3D Hashin-Tser and 3D Hashin-Zin are presented for CFRP materials. The above three models were coded and incorporated into the ABAQUS software by user subroutines, among which model 2D Hashin-Tan and model 3D Hashin-Tser were programmed using the implicit algorithm VUSDFLD while model 3D Hashin-Zin was coded using the explicit algorithm VUMAT. Experiments of uniaxial tension and three-point bending were performed. A single element subjected to uniaxial tension and three-bending were simulated to check the function and precision of the new models.
Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Simulation Study on the Influence of the Shielding Mechanism of the Battery Pack Shell on the Vehicle Radiation Emission

2021-04-06
2021-01-0149
From the perspective of the three elements of electromagnetic interference, the main function of shielding is to cut off the propagation path of electromagnetic noise. The battery pack casing can be regarded as shielding the electromagnetic interference conducted on its internal and external wiring harnesses, but because the battery pack casing has power lines in and out, the battery pack casing is an incomplete shield. In the field of electromagnetics, shielding can be divided into electrical shielding, magnetic shielding and electromagnetic shielding. Therefore, this paper studies its influence on the electromagnetic radiation emission of the whole vehicle from the perspective of shielding mechanism. Due to the role of the switch components in the power battery system, strong current fluctuation di/dt and voltage fluctuation dv/dt will be generated on the power cable, and these interferences will have an important impact on the radiation emission of the vehicle.
Technical Paper

Comparison between Different Modelling Methods of Secondary Path to Maximize Control Effect for Active Engine Mounts

2021-04-06
2021-01-0668
Active engine mount (AEM) is an effective approach which can optimize the noise, vibration and harshness (NVH) performance of vehicles. The filtered-x-least-mean-squares (FxLMS) algorithm is widely applicated for vibration attenuation in AEMs. However, the performance of FxLMS algorithm can be deteriorated without an accurate secondary path estimation. First, this paper models the secondary path using finite impulse response (FIR) model, infinite impulse response (IIR) model and back propagation (BP) neural network model and the model errors of which are compared to determine the most accurate and robust modeling method. After that, the influence of operation frequency on accuracy of the secondary path model is analyzed through simulation approach. Then, the impact of reference signal mismatch on the control effect is demonstrated to study the robustness of FxLMS algorithm.
Technical Paper

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

Multi-physics Modeling of Electromagnetically Excited Acoustic Noise of Induction Motor

2021-04-06
2021-01-0772
For electric vehicles, electromagnetically excited noise from the traction motor is one of the main acoustic noise sources, especially for automobiles driven at low speed that mechanical noise and aerodynamic noise are minor. To analyze the characteristics of the electromagnetically excited noise and propose noise reduction suggestions, an accurate noise prediction model is essential. In this paper, a multi-physics model to predict the electromagnetic force excited acoustic noise of induction motor is presented. First, a Three-Dimensional (3D) transient electromagnetic model of the motor was established using the Finite Element Method (FEM). By inputting the current signal collected in the noise test as the current source in the FEM model, the uneven distributed time-varying magnetic forces, which included the influence of the current harmonics due to Pulse-Width Modulation (PWM), was calculated. Then, a structural model was built.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

A Comparative Study of Fuel Cell Prediction Models Based on Relevance Vector Machines with Different Kernel Functions

2021-04-06
2021-01-0728
Fuel cell reactors, as the core components of fuel cell vehicles, have a short life problem that has always limited the development of fuel cell vehicles. The life attenuation curve of fuel cell shows nonlinear characteristics, and there is no model that can accurately predict its effect. This paper is based on the experimental data of the vehicle fuel cell reactor, which is derived from the 600 h durability test run by a 4 kW fuel cell reactor. The relevance vector machine, as a Bayes processing method that supports vector machine, is a data-driven method based on kernel functions. The regression model is established by the relevance vector machine, and the super-parameters are found by genetic algorithm, because the kernel function strongly affects the nonlinearity of the curve, and the decay curve of fuel cell reactor performance is predicted according to four different kernel functions.
Technical Paper

Aerodynamic Performance Modeling of the Centrifugal Compressor and Stability Analysis of the Compression System for Fuel Cell Vehicles

2021-04-06
2021-01-0733
The centrifugal compressor is one of the most commonly used air compressors for fuel cell air supply systems, and it has the small volume, high pressure ratio and low noise. However, surge in a centrifugal compressor severely limits its stable flow range. In this paper, a mathematical model of the compressor aerodynamic performance based on the energy transfer method was established, some parameters of model were identified by experimental data, and the model was validated through experiments. Then the dynamic model of the compression system was derived based on the compressor model and the Moore-Greitzer model. The stability analysis of the compression system was conducted, and it was strictly proved that when the compression system is unstable, there is the limit cycle in this nonlinear system, namely the surge cycle. Furthermore, the simulation of the compression system was conducted and the instability condition of the compression system was presented.
Technical Paper

Investigation on Cold Start for Proton Exchange Membrane Fuel Cell Stack

2021-04-06
2021-01-0738
Cold start remains a major obstacle to the commercialization of proton exchange membrane fuel cell (PEMFC), however, there are few studies on the cold start characteristics, especially at a complicated stack level. In this study, a novel layer-lumped numerical model with higher computational efficiency is proposed to investigate the cold start behavior of PEMFC stack, in which phase transition, heat transfer and electrochemical reaction are comprehensively considered. Besides, phase transition mechanisms are reconstructed based on the assumption that super-cooled water exists within the cell. With this model, the inconsistency of the stack temperature distribution and output performance is presented, some constant loading voltage strategies are investigated, and a linear variable controlling voltage strategy is developed.
Technical Paper

Robust Design Optimization for the Mechanical Claw of Novel Intelligent Sanitation Vehicles

2021-04-06
2021-01-0839
The mechanical claw is an important functional part of intelligent sanitation vehicles. Its performance significantly influences the functional reliability and structural safety of intelligent sanitation vehicles. The load of the trash changes extensively during the work of the mechanical claw. Hence, a comprehensive consideration of structural uncertainty during designing is needed to meet performance requirements. Uncertainty optimization design should be applied to reduce the sensitivity of structural performance to uncertain factors and ensure the robust performance of the mechanical paw structure. In this study, a numerical model of the mechanical claw of novel intelligent sanitation vehicles is established first in SolidWorks, and a finite element model is built by Optistruct. Based on the analysis of uncertain load factors of the mechanical claw, a robust mathematical model of uncertain factors is established by the Gauss-Chebyshev and Smolyak algorithm.
Technical Paper

Design and Structural Parameters Analysis of the Turbine Rotor in Fuel Cell Vehicle

2021-04-06
2021-01-0729
As the most power-consuming component of the fuel cell system, the compressor directly affects the efficiency of the system. Using turbines to recover energy from the exhaust gas, has become a feasible means to improve the fuel cell system’s efficiency. Previous designs are mainly based on high-temperature (>523.15 K) gas. However, the exhaust gas temperature of the proton exchange membrane fuel cell is only about 348.15 K, which is much lower than the working fluid temperature of typical turbines (such as those used in internal combustion engine). In this paper, a turbine rotor for a 100kW fuel cell system was designed. The influences of non-design structural parameters including blade inlet incline angle, blade thickness, blade tip clearance and blade number on the aerodynamic performance and internal flow of the rotor are investigated. Computational fluid dynamic (CFD) model of the rotor single flow is established to predict the turbine aerodynamic performance.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

Multi-target Tracking Algorithm with Adaptive Motion Model for Autonomous Urban Driving

2020-12-29
2020-01-5167
Since situational awareness is crucial for autonomous driving in urban environments, multi-target tracking has become an increasingly popular research topic during the last several years. For autonomous driving in urban environments, cars and pedestrians are the two main types of obstacles, and their motion characteristics are not the same. While in the current related multi-target tracking research, the same motion model (such as Constant Velocity model [CV]) or motion model set (such as CV combined with Constant Acceleration model [CA]) is mostly used to track different types of obstacles simultaneously. Besides, in current research, regular motion models are mostly adopted to track pedestrians, such as CV, CA, and so on, the uncertainty in pedestrian motion is not well considered.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

Prediction of Bus Passenger Flow Based on CEEMDAN-BP Model

2020-12-14
2020-01-5166
The prediction of passenger flow is of great significance to facilitate the decision-making processes for local authorities and transport operators to provide an effective bus scheduling. In this work, a backpropagation neural network (BPNN) was adopted to predict the bus passenger flow. To reduce the prediction error and improve the prediction accuracy, a combined model CEEMDAN-BP, which combines CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) method and BPNN, has been proposed. CEEMDAN is an improved method based on EEMD, which has been widely applied to signal smoothing and de-noising. Experimental results show that this combined model can exactly achieve an excellent prediction effect and improve the prediction accuracy of the network greatly.
Journal Article

Online Estimation of Membrane Water Content in Vehicular PEMFC by Complex Morlet Wavelet Transformations

2020-09-15
2020-01-2255
The amount of water content in membrane electrode assembly (MEA) is an important factor affecting the efficiency and life of proton exchange membrane fuel cell (PEMFC), and there are several methods to measure it. However, it’s widely believed that the most feasible method to measure the water content in the MEA is an indirect way as described below: measure the electrochemical impedance spectroscopy (EIS), and take advantage of the positive correlation between the proton’s conductivity, which is reciprocal of specific resistance, and the water content in MEA. The traditional EIS measurement method has the shortcoming of high cost and slow speed, especially in low frequency bands, so this method is unsuitable for high-power vehicle fuel cell systems. In this paper, a measuring method which does not require a large number of experiments and only need to perform Morlet wavelet transform on the PEMFC voltage signal as well as current signal is proposed.
X