Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

Analysis of Sulfur-Related White Smoke Emissions from DPF System

2015-09-01
2015-01-2023
In a Diesel engine with a Diesel particulate filter (DPF) system, high-sulfur fuel causes white smoke containing odorous and harmful pollutants during DPF regeneration. This study investigates the conditions and mechanisms of sulfur-related white smoke generation. Engine and vehicle tests found that sulfur compounds emitted from the engine accumulated on the catalysts in the DPF system and were emitted as white smoke during DPF regeneration. The white smoke was observed when the catalyst temperature was more than 450°C, under conditions such as the early stage of DPF regeneration. Model gas tests were conducted to clarify the mechanism of the white smoke. It was found that SO2 emitted from the engine was oxidized to SO3 on the catalyst, which was then mainly absorbed on the oxidation catalyst support (Al2O3). Then, the absorbed SO3 was desorbed and converted into white smoke.
Technical Paper

Effects of Next-Generation Bio Diesel Fuel on the Engine Performance

2015-09-01
2015-01-1928
Hydrotreated Vegetable Oil (HVO) and Sugar-to-Diesel as next-generation bio diesel fuels consist of normal and iso-paraffin, and those carbon number of paraffinic hydrocarbons and distillation characteristics are narrow distribution. These characteristics would cause to deteriorate the evaporation and mixture with air and fuel. Therefore, in this study, the effects of normal paraffin (Tridecane) and iso-paraffin (HVO) on emission characteristics and cold start performance in a diesel engine were investigated by engine dynamometer tests, cold start vehicle tests, and spray analyzer tests. From the results, it was found that normal and iso-paraffin are beneficial for HC, CO, Smoke emission reduction. In addition, isomerization is effective for the diesel engine to fulfill cold start performance, since normal paraffin of narrow carbon number distribution became solidified under low temperature and high pressure condition in a common rail system.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Technical Paper

Effects of RME30 on Exhaust Emissions and Combustion in a Diesel Engine

2008-10-06
2008-01-2499
Considering the popularity of biodiesel fuels for diesel vehicles, the impacts of rapeseed oil methyl ester (RME), which is the most utilized biodiesel fuel in Europe, on tailpipe emissions from a diesel passenger car was investigated. In this study, 30% RME blended diesel fuel (RME30) was used and the comparison of tailpipe emissions between RME30 and a reference diesel fuel was conducted using a test vehicle with the latest engine and aftertreatment system. The results of the investigation reveal that RME30 generates about the same amount of NOx in tailpipe emissions as diesel fuel, and less HC, CO, and PM. These phenomena occurred in spite of attaching catalysts to the test vehicle, and therefore suggesting that the NOx conversion efficiency of the catalysts for RME30 is equal to that for diesel fuel. The injection rate for RME30 was the same as that for diesel fuel.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

2007-07-23
2007-01-2004
Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Effects of GTL Fuel Properties on DI Diesel Combustion

2005-10-24
2005-01-3763
Reduction of vehicle exhaust emissions is an important contributor to improved air quality. At the same time demand is growing for new transportation fuels that can enhance security and diversity of energy supply. Gas to Liquids (GTL) Fuel has generated much interest from governments and automotive manufacturers. It is a liquid fuel derived from natural gas, and its properties - sulphur free, low polyaromatics and high cetane number - make it desirable for future clean light-duty diesel engines. In this paper, the effects of distillation characteristics and cetane number of experimental GTL test fuels on direct injection (DI) diesel combustion and exhaust emissions were investigated, together with their spray behaviour and mixing characteristics. The test results show that the lower distillation test fuels produce the largest reductions in smoke and PM emissions even at high cetane numbers. This is linked to the enhanced air/fuel mixing of the lighter fuel in a shorter time.
Technical Paper

Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine

2003-05-19
2003-01-1815
Effects of fuel distillation characteristics and cetane number on premixed charge compression ignition (PCCI) combustion were investigated for the purpose of reducing NOx and PM emissions from a direct injection diesel engine. The test engine had a hole type injection nozzle for conventional diesel combustion at high load operation. A low compression ratio and cooled EGR were applied to the test engine in order to reduce the compression temperature for avoiding pre-ignition. The investigation results show that, in the case of ignition control by EGR, a light fuel with lower distillation characteristics had an advantage of reducing smoke at higher loads. This means that high volatility fuel is effective in promoting lean mixture formation of fuel and air during the ignition delay. Moreover, lowering the cetane number was effective in reducing NOx emissions by suppression of combustion temperature.
X