Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Poor Engine Response Caused by MTBE-Blended Gasoline from the Standpoint of Fuel Evaporation

1992-02-01
920800
Fifty percent distillation temperature (T50) can be used as a warm-up driveability indicator for a hydrocarbon-type gasoline. MTBE-blended gasoline, however, provides poorer driveability than a hydrocarbon-type gasoline with the same T50. The purposes of this paper are to examine the reason for poor engine driveability caused by MTBE-blended gasolines, and to propose a new driveability indicator for gasolines including MTBE-blended gasolines. The static and dynamic evaporation characteristics of MTBE-blended gasolines such as the evaporation rate and the behavior of each component during evaporation were analyzed mainly by using Gas Chromatography/Mass Spectrometry. The results of the analysis show that the MTBE concentration in the vapor, evaporated at ambient temperature (e.g. 24°C), is higher than that in the original gasoline. Accordingly, the fuel vapor with enriched MTBE flows into the combustion chamber of an engine just after the throttle valve is opened.
Technical Paper

The Influence of Fuel Qualities on White Smoke Emissions from Light-Duty Diesel Engine

1987-02-01
870341
In many countries, cetane number and distillation properties of diesel fuel have been changing, thus affecting the performance of diesel engines. This paper describes investigations made on the effect of diesel fuel quality on white smoke (one of the important emissions of diesel engines). The result of simple laboratory tests simulating high altitude conditions plus field tests using three types of disel engines supplied with various types of diesel fuels is given. It was found that white smoke appearing tendency correlated best with cetane number and the 90 percent distillation point of the fuel. The field tests performed at high altitude correlated well with the simple laboratory tests.
X