Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

The Development of a New V6 3.5L Turbocharged Gasoline Engine

2018-04-03
2018-01-0366
For the launch of the redesigned Lexus LS, a new 3.5 L V6 twin turbo engine has been developed aiming at unparalleled performance on four axes, “driving pleasure”, “power-performance”, “quietness” and “fuel economy”. To achieve outstanding power-performance and high thermal efficiency, the specifications have been optimized for high speed combustion. The maximum torque of 600 Nm, power of 310 kW (yielding specific power of 90 kW/L), and the maximum thermal efficiency of 37% have been achieved using several new technologies including a high efficiency turbocharger. A prototype vehicle equipped with this engine and Direct-Shift 10AT achieved a 0-60 mph acceleration time of 4.6 sec, with extremely good CAFE combined fuel economy of 23 mpg and power-performance aligned with V8 turbocharged offerings from competing OEM’s.
Journal Article

Effects of High Boiling Point Fuel Additives on Deposits in a Direct Injection Gasoline Engine

2017-10-08
2017-01-2299
The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Journal Article

An Intake Valve Deposit (IVD) Engine Test Development to Investigate Deposit Build-Up Mechanism Using a Real Engine

2017-10-08
2017-01-2291
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
Technical Paper

The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine

2017-03-28
2017-01-1021
In order to adapt to energy security and the changes of global-scale environment, further improvement of fuel economy and adaptation to each country’s severer exhaust gas emission regulation are required in an automotive engine. To achieve higher power performance with lower fuel consumption, the engine’s basic internal design such as an engine block and cylinder head were changed and the combustion speed was dramatically increased. Consequently, stroke-bore ratio and valve layout were optimized. Also, both flow coefficient and intake tumble ratio port were improved by adopting a laser cladded valve seat. In addition, several new technologies were adopted. The Atkinson cycle using a new Electrical VVT (Variable Valve Timing) and new combustion technology adopting new multi-hole type Direct fuel Injector (DI) improved engine power and fuel economy and reduced exhaust emissions.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Technical Paper

Power Plant Model of Fuel Consumption and Vibration for Vehicle Concept Planning

2015-06-15
2015-01-2253
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration in advance. This can be accomplished using virtual engine specifications and a virtual vehicle frame. In this paper, I will show the power plant model with electric starter and battery that can predict fuel economy, combustion heat results and transient torque. The power plant is a 1.3L 4cyl designed for NA Spark Ignition. The power plant model was realized using an energy based model using VHDL-AMS. Here, VHDL-AMS is modeling language stored in IEC international standard (IEC61691-6) and can realize multi physics in 1D simulation. The modeling language supports electrical, magnetic, thermal, mechanical, fluidic and compressive fluidic domains. The model was created in house using VHDL-AMS and validated on ANSYS SIMPLORER. The simulated results of fuel energy consumption agreed with driving energy and amount of energy losses, e.g. cooling loss, exhaust loss.
Technical Paper

Study of Ignition System for Demand Voltage Reduction

2015-04-14
2015-01-0777
Improving the engine efficiency to respond to climate change and energy security issues is strongly required. In order to improve the engine efficiency, lower fuel consumption, and enhance engine performance, OEMs have been developing high compression ratio engines and downsized turbocharged engines. However, higher compression ratio and turbocharging cause cylinder pressure to increase, which in turn increases the demand voltage for ignition. To reduce the demand voltage, a new ignition system is developed that uses a high voltage Zener diode to maintain a constant output voltage. Maintaining a constant voltage higher than the static breakdown voltage helps limit the amount of overshoot produced during the spark event. This allows discharge to occur at a lower demand voltage than with conventional spark ignition systems. The results show that the maximum reduction in demand voltage is 3.5 kV when the engine is operated at 2800 rpm and 2.6 MPa break mean effective pressure.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1268
Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Journal Article

Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

2014-10-13
2014-01-2785
Gasoline engine downsizing combined with a turbocharger is one of the more effective approaches to improve fuel efficiency without sacrificing power performance. The benefit comes from lower pumping loss, lower mechanical friction due to ‘downsizing’ of the engine displacement and ‘down-speeding’ of the engine by using higher transmission gear ratios which is allowed by the higher engine torque at lower engine speeds. However abnormal combustion referred to as Low-Speed Pre-ignition (LSPI) is known to be able to occur in low-speed and high-torque conditions. It is a potential restriction to maximize the engine performance and its benefit, therefore prevention of LSPI is strongly desired for long-term durability of engine performance. According to recent technical reports, auto-ignition of an engine oil droplet in a combustion chamber is believed to be one of major contributing factors of LSPI and its formulations have a significant effect on LSPI frequency.
Technical Paper

Combustion Noise Analysis of Premixed Diesel Engine by Engine Tests and Simulations

2014-04-01
2014-01-1293
When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise.
Technical Paper

Economy with Superior Thermal Efficient Combustion (ESTEC)

2014-04-01
2014-01-1192
From the time the first Hybrid Vehicle (HV) was launched, 17 years have past, and HV vehicles have boosted the global CO2 reduction trend. In order to maximize their merit, many HV engines focused on the best fuel consumption value namely thermal efficiency. This was because HV systems can control the operating area of engine and get merit. However, considering climate change and energy issues, it is important to focus conventional vehicle as well as HV vehicle progress. The Atkinson cycle with a high compression ratio is the typical approach that HV engines use to enhance thermal efficiency. However, the drawback of the high compression ratio is a reduction of engine torque. Thermal efficiency at low load areas is relatively more important with conventional engines than with HV engines and how to overcome these issues is significantly important with conventional engines.
Technical Paper

Study of Cooling Drag Reduction Method by Controlling Cooling Flow

2014-04-01
2014-01-0679
As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions.
Journal Article

Onboard Gasoline Separation for Improved Vehicle Efficiency

2014-04-01
2014-01-1200
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
X