Refine Your Search

Topic

Author

Search Results

Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Development of Fuel Cell (FC) System for New Generation FC Bus

2019-04-02
2019-01-0372
Toyota Motor Corporation has been actively pursuing the development of fuel cell vehicles (FCVs) to respond to global environmental concerns and demands for clean energy. Toyota developed the first fuel cell (FC) bus to receive vehicle type certification in Japan. Subsequently, a new FC bus has been developed, which adopts two FC systems and four high-voltage batteries to achieve the required high power performance and durability. For enhanced durability, the FC system is controlled to maximize usage of the high-voltage batteries and to reduce the number of electric potential changes of the fuel cell. To accomplish this, the voltage of the FC stack must be kept high and FC power must be kept low. The high-voltage batteries were used to actively minimize FC power during acceleration.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”

2015-04-14
2015-01-1169
The new Toyota FCV “Mirai” has reduced the weight, size, and cost of the high-pressure hydrogen storage system while improving fueling performance. The four 70 MPa tanks used on the 2008 Toyota FCHV-adv were reduced to two new larger diameter tanks. The laminated structure of the tanks was optimized to reduce weight, and a high-strength low-cost carbon fiber material was newly developed and adopted. The size of the high-pressure valve was reduced by improving its structure and a high-pressure sensor from a conventional vehicle was modified for use in a high-pressure hydrogen atmosphere. These innovations helped to improve the weight of the whole storage system by approximately 15% in comparison with Toyota FCHV-adv, while reducing the number of component parts by half and substantially reducing cost. The time required to fuel the FCV was greatly reduced by chilling the filling gas temperature at the hydrogen filling station to −40°C (as per SAE J2601).
Technical Paper

Economy with Superior Thermal Efficient Combustion (ESTEC)

2014-04-01
2014-01-1192
From the time the first Hybrid Vehicle (HV) was launched, 17 years have past, and HV vehicles have boosted the global CO2 reduction trend. In order to maximize their merit, many HV engines focused on the best fuel consumption value namely thermal efficiency. This was because HV systems can control the operating area of engine and get merit. However, considering climate change and energy issues, it is important to focus conventional vehicle as well as HV vehicle progress. The Atkinson cycle with a high compression ratio is the typical approach that HV engines use to enhance thermal efficiency. However, the drawback of the high compression ratio is a reduction of engine torque. Thermal efficiency at low load areas is relatively more important with conventional engines than with HV engines and how to overcome these issues is significantly important with conventional engines.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Technical Paper

Development of Vehicle Power Connector Equipped with Outdoor Power Outlet Using Vehicle Inlet of Plug-In Hybrid Vehicle

2013-04-08
2013-01-1442
After the Great East Japan Earthquake on March 11, 2011, Toyota Motor Corporation received considerable public response regarding the role of vehicles in emergencies from a large number of customers. These included comments about the usefulness of the electricity supply system in the Estima Hybrid during the long power outages caused by the earthquake. In response, Toyota decided to install this system in its other hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). This system is capable of supplying power up to 1,500 watts, which means that it can be used to operate virtually every household electrical device. Since the engine starts automatically when the main battery capacity is depleted, a single vehicle can supply the daily power needs of a normal house in Japan for about four days, providing that the battery is fully charged and the fuel tank is full.
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Progress and Challenges in Toyota's Fuel Cell Vehicle Development

2011-10-06
2011-28-0061
This paper describes an outline of the Toyota FCHV-adv, a fuel cell vehicle with a practical cruising range of more than 500 km. The cold startability of the FCHV-adv was improved by modifying the FC stack and control system. As a result, the FCHV-adv is capable of starting at a temperature of -30°C. In the future, Toyota intends to improve durability and reduce costs and is continuing to cooperate with governments and energy businesses to establish infrastructure and make the necessary modifications to laws and regulations.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Technical Paper

Development of Toyota Plug-in hybrid system

2011-05-17
2011-39-7219
Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to concerns related to the automotive mobility like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which can use clean electric energy, and HV with it's high environmental potential and user-friendliness comparable to conventional vehicles such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV which will be introduced in a year.
Technical Paper

Classification and View of Automotive Power Supply Voltage for HEV, PHEV and EV

2011-05-17
2011-39-7227
In the twenty-first century, the development of vehicles has been proceeding towards electronics, electric propulsion and system integration in 5 big trends. Environment, Safety, Market Change, Energy Security and Natural Resources. Especially, “Electric Propulsion of Vehicles” is rapidly accelerated for countermeasure of global warming. In this paper, we will propose the current status analysis for automotive high power supply voltage and classification for future view of HEV(Hybird Electric Vehicle). PHEV(Plug-in Hybrid Electric Vehicle) and EV(Electric Vehicle).
Technical Paper

Research on Metal Air Battery

2011-05-17
2011-39-7233
Plug-in hybrid vehicles (PHVs) and/or electric vehicles (EVs) as sustainable mobility rapidly penetrate into a new market. Cruising ranges of PHVs and EVs strongly depend on the energy density of batteries. In this paper, we briefly introduce our achievements of metal air batteries as one of the innovative batteries with high energy density.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

The application of VHDL-AMS multi-domain HV simulation to the power performance and the fuel economy during warming up process

2011-05-17
2011-39-7245
In order to reduce CO2, EV and Hybrid Vehicle (HV) are effective. Those type vehicles have different power train from conventional vehicle. Those new power trains drastically improve their efficiency from conventional vehicle with keeping same or superior power performance. On the other hand, those vehicles have the issue for thermal energy shortage during warming up process. The thermal energy is very large. The thermal energy seriously affect on the fuel economy for HV and the mileage for EV. In this paper, the power performance, the fuel economy and the effect of heat energy recovery from the exhaust gas are discussed for HV. For the power performance, the simulated acceleration time of 0-100km/h was 11.8sec and the measured vehicle time was 11.9sec. The error between simulation and actual measurement result was 1.2%. As for the fuel economy, the energy management using exhaust gas heat exchange system improved 10.3% of the fuel consumption during warming up.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
X