Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 2 - Influence of Engine Oil Evaporation Characteristics on Oil Consumption of Internal Combustion Engines

2022-03-29
2022-01-0524
The reduction of CO2 emissions is one of the most important challenges for the automotive industry to contribute to address global warming. Reducing friction of internal combustion engines (ICEs) is one effective countermeasure to realize this objective. The improvement of engine oil can contribute to reduce fuel consumption by reducing friction between engine parts. Electrification of ICE powertrains increases the overall efficiency of powertrains and reduces the average engine oil temperature during vehicle operation, due to intermittent engine operation. An effective way of reducing engine friction is to lower the viscosity of the engine oil in the low to medium temperature range. This can be accomplished while maintaining viscosity at high temperatures by reducing the base oil viscosity and increasing the viscosity modifier (VM) content to raise the viscosity index (so-called “flat viscosity” concept).
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Journal Article

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines

2012-09-10
2012-01-1615
Abnormal combustion referred to as Low Speed Pre-Ignition (LSPI) may restrict low speed torque improvements in turbocharged Direct Injection (DI) - Spark Ignition (SI) Engines. Recent investigations have reported that the auto-ignition of an engine oil droplet from the piston crevice in the combustion chamber may cause unexpected and random LSPI. This study shows that engine oil formulations have significant effects on LSPI. We found that the spontaneous ignition temperature of engine oil, as determined using High-Pressure Differential Scanning Calorimetry (HP-DSC) correlates with LSPI frequency in a prototype turbocharged DI-SI engine. Based on these findings, we believe that the oxidation reaction of the oil is very important factor to the LSPI. Our test data, using a prototype engine, shows both preventative and contributory effects of base oil and metal-based engine oil additives.
Technical Paper

Development of ILSAC GF-5 0W-20 Fuel Economy Gasoline Engine Oil

2012-09-10
2012-01-1614
We report in this paper our newly developed technology applied to ILSAC GF-5 0W-20 engine oil that offers great fuel economy improvement over GF-4 counterpart, which is a key performance requirement of modern engine oil to reduce CO2 emissions from a vehicle. Our development strategy of the oil consisted of two elements: (1) further friction reduction under mixed and hydrodynamic lubrication conditions considering use of roller rocker arm type valve train system and (2) lowering viscosity at low temperature conditions to improve fuel economy under cold cycles. Use of roller rocker arm type valve train system has been spreading, because of its advantage of reducing mechanical friction. Unlike engine with conventional direct-acting type valve train system, lubrication condition of engine with the roller rocker arm type valve train system has higher contribution of mixed or hydrodynamic lubrication conditions rather than boundary lubrication condition.
X