Refine Your Search

Topic

Author

Search Results

Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Road Crossing Assistance Method Using Object Detection Based on Deep Learning

2022-03-29
2022-01-0149
This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Development of TLP-AI Technology to Realize High Temperature Operation of Power Module

2019-04-02
2019-01-0607
Application of SiC power devices is regarded as a promising means of reducing the power loss of power modules mounted in power control units. Due to those high thermostable characteristics, the power module with SiC power devices are required to have higher operating temperature than the conventional power module with Si power devices. However, the limitations of current packaging technology prevent the utilization of the full potential of SiC power devices. To resolve these issues, the development of device bonding technology is very important. Although transient liquid phase (TLP) bonding is a promising technology for enabling high temperature operation because its bonding layer has a high melting point, the characteristics of the TLP bonding layer tend to damage the power devices. This paper describes the development of a bonding technology to achieve high temperature operation using a stress reduction effect.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Technical Paper

Friction Reduction Technology for Low Viscosity Engine Oil Compatible with LSPI Prevention Performance

2016-10-17
2016-01-2276
Increasing numbers of vehicles equipped with downsized, turbocharged engines have been introduced seeking for better fuel economy. LSPI (low speed pre-ignition), which can damage engine hardware, is a potential risk of the engines. We reported that engine oil formulation affects frequency of LSPI events, and formulating magnesium detergents into oil is a promising option to prevent LSPI events. From the viewpoint of achieving better fuel economy by engine oil, lowering viscosity is being required. However, it causes reduced oil film thickness and will expand boundary lubrication condition regions in some engine parts. Hence, a technology to reduce friction under boundary lubrication becomes important.
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Journal Article

Development of Fracture Model for Laser Screw Welding

2016-04-05
2016-01-1344
This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Fatigue Life Prediction Method for Laser Screw Welds in Automotive Structures

2016-04-05
2016-01-0394
This paper describes the development of a fatigue life prediction method for Laser Screw Welding (LSW). Fatigue life prediction is used to assess the durability of automotive structures in the early design stages in order to shorten the vehicle development time. The LSW technology is a spot-type joining method similar to resistance spot welding (RSW), and has been developed and applied to body-inwhite structures in recent years. LSW can join metal panels even when a clearance exists between the panels. However, as a result of this favorable clearance-allowance feature of LSW, a concave shape may occur at the nugget part of the joint. These LSW geometric features, the concavity of nuggets and the clearance between panels, are thought to affect the local stiffness behavior of the joint. Therefore, while assessing the fatigue life of LSW, it is essential to estimate the influence of these factors adequately for the representation of the local stiffness behavior of the joint.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Technical Paper

Examination of Crack Growth Behavior in Induction Hardened Material under Torsional Fatigue

2011-04-12
2011-01-0198
Since wear resistance and fatigue strength are key requirements for chassis components, induction hardening is widely used to apply compressive stress for controlling crack growth. Therefore, it is crucial that the influence of defects is examined with compressive residual stress applied to parts. In this report, the relationship between crack depth and compressive residual stress is evaluated using a cylindrical specimen and a torsional fatigue test. The test results were found to be consistent with CAE simulations performed in advance. In the future, it will be necessary to make this method applicable to product design to further improve vehicle safety performance.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
X