Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Impacts of Dynamic Toe Angle Variations on Four-Wheel Independent Steering Control and their Optimization Strategies

2024-04-09
2024-01-2321
Compared to traditional vehicles, four-wheel independent drive and four-wheel independent steering (4WID-4WIS) vehicles have gained significant attention from researchers due to their enhanced control flexibility and superior handling performance. The steering angle deviation caused by dynamic toe angle changes in two-wheel steering (2WS) systems is often minimal and hence overlooked. However, the impact becomes notably significant in 4WIS systems. This article contrasts the tire slip angle differences between 2WS and 4WIS, and delves into the effects of dynamic toe angle variations on 4WIS control. Solutions are proposed both in terms of steering angle control and suspension design. Firstly, a dynamic model for the 4WID-4WIS vehicle is established. Secondly, a hierarchical tire force distribution strategy is designed for trajectory tracking.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles

2024-04-09
2024-01-2376
The strategy for emission reduction in the P2.5 hybrid system involves the optimization of engine torque, engine speed, catalyst heat duration, and motor torque regulation in a coordinated manner. In addition to employing traditional engine control methods used in HEV models, unique approaches can be utilized to effectively manage emissions. The primary principle is to ensure that the engine operates predominantly under steady-state conditions or limits its load to regulate emissions levels. The main contributions of this paper are as follows: The first is the optimization of catalyst heating stage. During the catalyst heating stage, the system divides it into one or two stages. In the first stage, the vehicle is driven by the motor while keeping the engine idle. This approach stabilizes catalyst heating and prevents fluctuations in air-fuel ratio caused by speed and load changes that could potentially worsen emissions performance.
Technical Paper

Research on Motor Control and Application in Dual Motor Hybrid System

2024-04-09
2024-01-2220
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator..
Technical Paper

Experimental Study on Ammonia-Methanol Combustion and Emission Characteristics in a Spark Ignition Engine

2024-04-09
2024-01-2820
Ammonia and methanol are both future fuels with carbon-neutral potential. Ammonia has a high octane number, a slow flame speed, and a narrow ignition limit, while methanol has a fast flame speed with complementary combustion characteristics but is more likely to lead to pre-ignition and knock. In this paper, the combustion and emission characteristics of ammonia-methanol solution in a high compression ratio spark ignition engine are investigated. The experimental results show that the peak in-cylinder pressure and peak heat release rate of the engine when using ammonia-methanol solution are lower and the combustion phase is retarded compared with using methanol at the same spark timing conditions. Using ammonia-methanol solution in the engine resulted in a more ideal combustion phase than that of gasoline, leading to an increase in indicated thermal efficiency of more than 0.6% and a wider range of efficient operating conditions.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

Numerical Simulation of Ammonia-Hydrogen Engine Using Low-Pressure Direct Injection (LP-DI)

2024-04-09
2024-01-2118
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency.
Technical Paper

Combustion Characteristics of Iso-Octane/Hydrogen Flames under T and P Effects up to near Flammability Limits

2023-04-11
2023-01-0333
Lean combustion is an approach to achieving higher thermal efficiency for spark ignition engines. However, it faces low burning velocity and unstable combustion problems near the lean flammability limits region. The current work is attempting to investigate the combustion characteristics of iso-octane flame with 0% and 30% H2 up to near lean limits (λ = 1.7) at 100-300 kPa and 393-453 K. The flame appeared spherically by 37 mJ spark energy at λ = 0.8-1.2, whereas the ultra-lean mixtures, λ ≥ 1.3, ignited at 3000 mJ under wrinkles and buoyancy effects. The impact of initial pressure and temperature on the lean mixture was stronger than the stoichiometric mixture regarding flame radius and diffusional-thermal instability. The buoyancy appeared at the highest burning velocity of 27.41 cm/s.
Technical Paper

Control Strategy for All-Wheel Cooperative Steering of Multi-Axle Vehicle

2023-04-11
2023-01-0120
Applications in commercial and military fields created high demands on the steering performance of multi-axle vehicle. With the characteristic of more degrees of freedom (DOF), all-wheel cooperative steering is more conducive to improve the steering performance of multi-axle vehicle. This paper studies multi-axle vehicle assembled with steer-by-wire system, and proposes a control strategy to achieve all-wheel cooperative steering to improve the low-speed steering flexibility and high-speed steering stability of multi-axle vehicle. Based on the ideal steering performance at low-speed and high-speed, the steady-state gain of multi-axle vehicles at different speeds is reshaped. Also, the corresponding vehicle reference model is constructed to provide the ideal vehicle state as a reference. The precision of the vehicle reference model is verified by an all-wheel independent steering platform.
Journal Article

Modeling and Verification of Tire Nonlinearity Effect on Accuracy of Vehicle Yaw Rate Calculation

2023-04-11
2023-01-0753
The desired yaw rate is a vital target parameter for vehicle stability control, which is currently determined as a steady-state yaw rate by the linear single-track vehicle model. Tire nonlinearity deteriorates the effect of vehicle stability control at larger lateral acceleration. This paper proposes a new calculation method of the steady-state yaw rate considering the tire nonlinearity based on the brush tire model. To validate and verify the proposed method, step steering tests of the target vehicle under different lateral accelerations are carried out on a real proving ground. The results show that when the lateral acceleration is relatively small, the difference between the calculation results of the proposed method and the traditional one is not apparent, and both methods can provide a good estimation for the steady-state yaw rate; however, when the lateral acceleration is relatively large, the difference becomes apparent.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Technical Paper

Road Rough Estimation for Autonomous Vehicle Based on Adaptive Unscented Kalman Filter Integrated with Minimum Model Error Criterion

2022-03-29
2022-01-0071
The accuracy of road input identifiaction for autonomous vehicles (AVs) system, especially in state-based AVs control for improving road handling and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely and effectively acquire road rough information and chose the reasonable road-based control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for AVs system, e.g., varying center of gravity (C.G.) of sprung mass, controllable suspension damping force or variable spring stiffness. To tackle the above mentioned, this paper develops a novel observer approach, which combines unscented Kalman filter (UKF) and Minimum Model Error (MME) theory, to optimize the estimation accuracy of the road rough for AVs system. A full-car nonlinear model and road profile model are first established.
Technical Paper

Trajectory Following Control for Automated Drifting of 4WID Vehicles

2022-03-29
2022-01-0911
It is very significant for autonomous vehicles to have the ability to operate beyond the stable handling limits, which plays a vital role in vehicles’ active safety and enhances riding and driving pleasure. For traditional vehicles, it is rather difficult to control the longitudinal speed, sideslip angle and yaw rate simultaneously when drifting along a given trajectory because they are under-actuated. Nevertheless, for a 4-wheel-independent-drive (4WID) vehicle, it is possible and controllable thanks to its over-actuated characteristics. This article designs a trajectory following control strategy for automated drifting of 4WID vehicles. First, a double-track 7 degree of freedom (7DOF) vehicle dynamic model is established, which incorporates longitudinal and lateral load transfer and considers nonlinear tire models. The controller which proposes a hierarchical architecture is then designed.
X