Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Research on the Pollutant Reduction Control for P2.5 Hybrid Electric Vehicles

2024-04-09
2024-01-2376
The strategy for emission reduction in the P2.5 hybrid system involves the optimization of engine torque, engine speed, catalyst heat duration, and motor torque regulation in a coordinated manner. In addition to employing traditional engine control methods used in HEV models, unique approaches can be utilized to effectively manage emissions. The primary principle is to ensure that the engine operates predominantly under steady-state conditions or limits its load to regulate emissions levels. The main contributions of this paper are as follows: The first is the optimization of catalyst heating stage. During the catalyst heating stage, the system divides it into one or two stages. In the first stage, the vehicle is driven by the motor while keeping the engine idle. This approach stabilizes catalyst heating and prevents fluctuations in air-fuel ratio caused by speed and load changes that could potentially worsen emissions performance.
Technical Paper

Research on Motor Control and Application in Dual Motor Hybrid System

2024-04-09
2024-01-2220
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator..
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

Experimental Study on Ammonia-Methanol Combustion and Emission Characteristics in a Spark Ignition Engine

2024-04-09
2024-01-2820
Ammonia and methanol are both future fuels with carbon-neutral potential. Ammonia has a high octane number, a slow flame speed, and a narrow ignition limit, while methanol has a fast flame speed with complementary combustion characteristics but is more likely to lead to pre-ignition and knock. In this paper, the combustion and emission characteristics of ammonia-methanol solution in a high compression ratio spark ignition engine are investigated. The experimental results show that the peak in-cylinder pressure and peak heat release rate of the engine when using ammonia-methanol solution are lower and the combustion phase is retarded compared with using methanol at the same spark timing conditions. Using ammonia-methanol solution in the engine resulted in a more ideal combustion phase than that of gasoline, leading to an increase in indicated thermal efficiency of more than 0.6% and a wider range of efficient operating conditions.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

Numerical Simulation of Ammonia-Hydrogen Engine Using Low-Pressure Direct Injection (LP-DI)

2024-04-09
2024-01-2118
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency.
Technical Paper

Viability of Alternative Fuels to Decarbonize the World’s Largest Agricultural Tractor Market

2024-01-16
2024-26-0065
India is the market with the highest sales of agricultural tractors and the market with the highest number of agricultural tractor park, as well. Even though taking into account the lower average power of Indian agricultural tractors compared to regions with considerably larger field sizes, their cumulated diesel fuel consumption reaches a significant size. The possible use of alternative powertrains like battery-electric, especially considering the lower power of the Indian tractor market, seems feasible, but might be struggling with challenges in terms of charging infrastructure and the possibly resulting lower productivity due to required charging times. Therefore AVL proposes to investigate the use of alternative fuels for internal combustion engines, a topic which is also being discussed by other global tractor OEMs. In that context the focus is typically on higher tractor powers due to current storage limitations of battery-electric systems and other alternatives.
Technical Paper

Industrialization of the Commercial Hydrogen Engine till 2025

2024-01-16
2024-26-0167
India striving for carbon neutrality influences futures powertrain architecture of commercial vehicles. The use of CO2-free drives as battery electric have been demonstrated for various applications. The productivity still is a challenge due to missing high power charging infrastructure or limited range. This draws the attention to the use of sustainable fuels due to lower refueling times. The hydrogen engine got highest attention in the last couple of years. For markets as the EU the driver for hydrogen is the CO2 emission reduction, whereas for markets as India hydrogen offers the additional opportunity for more independence from fossil imports. Different OEMs all over the world have converted diesel engines to hydrogen operation with strong focus on performance and emission demonstration, so far with limited technology readiness of different key components.
Technical Paper

NOx Emission Characteristics of Active Pre-Chamber Jet Ignition Engine with Ammonia Hydrogen Blending Fuel

2023-10-31
2023-01-1629
Ammonia is employed as the carbon-free fuel in the future engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx and unburned NH3/H2 in the exhaust emissions is produced from combustion of ammonia and is one kind of the most strictly controlled pollutants in the emission regulation. This paper aims to investigate the NOx and unburned NH3/H2 generative process and emission characteristics by CFD simulation during the engine combustion. The results show that the unburned ammonia and hydrogen emissions increase with an increase of equivalence ratio and hydrogen blending ratio. In contrast, the emission concentrations of NOx, NO, and NO2 decrease with the increasing of equivalence ratio, but increase with hydrogen blending ratio rising. The emission concentration of N2O is highly sensitive to the O/H group and temperature, and it is precisely opposite to that of NO and NO2.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Technical Paper

Combustion Characteristics of Iso-Octane/Hydrogen Flames under T and P Effects up to near Flammability Limits

2023-04-11
2023-01-0333
Lean combustion is an approach to achieving higher thermal efficiency for spark ignition engines. However, it faces low burning velocity and unstable combustion problems near the lean flammability limits region. The current work is attempting to investigate the combustion characteristics of iso-octane flame with 0% and 30% H2 up to near lean limits (λ = 1.7) at 100-300 kPa and 393-453 K. The flame appeared spherically by 37 mJ spark energy at λ = 0.8-1.2, whereas the ultra-lean mixtures, λ ≥ 1.3, ignited at 3000 mJ under wrinkles and buoyancy effects. The impact of initial pressure and temperature on the lean mixture was stronger than the stoichiometric mixture regarding flame radius and diffusional-thermal instability. The buoyancy appeared at the highest burning velocity of 27.41 cm/s.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Technical Paper

Methodology Development for Investigation and Optimization of Engine Starts in a HEV Powertrain

2022-03-29
2022-01-0484
The shift toward electrification and limitations in battery electric vehicle technology have led to high demand for hybrid vehicles (HEVs) that utilize a battery and an internal combustion engine (ICE) for propulsion. Although HEVs enable lower fuel consumption and emissions compared to conventional vehicles, they still require combustion of fuels for ICE operation. Thus, emissions from hybrid vehicles are still a major concern. Engine starts are a major source of emissions during any driving event, especially before the three-way catalyst (TWC) reaches its light-off temperature. Since the engine is subjected to multiple starts during most driving events, it is important to mitigate and better understand the impact of these emissions. In this study, experiments were conducted to analyze engine starts in a hybrid powertrain on different experimental setup.
Technical Paper

Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine

2022-03-29
2022-01-0435
Octane number (ON) and octane sensitivity (S), the fuel anti-knock indices, are critical for the design of advanced jet ignition engines. In this study, ten fuels with different research octane number (RON) and varying S were formulated based on ethanol reference fuels (ERFs) to investigate the effect of S on combustion of jet ignition engine. To fully understand S effects, the combustion characteristics under EGR dilution and lean burn were further investigated. The results indicated that increasing S resulted in higher reactivity with shorter ignition delay and combustion duration. The increase of reactivity led to heavier knocking intensity. The competition between the flame speed and the reactivity of the mixture determined the auto-ignition fraction of mixture and the knocking onset crank angle as S varied. Medium S (S=3) was helpful to improve the combustion speed, reduce the auto-ignition fraction of mixture and retard the knocking onset crank angle.
X