Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

Research on Intake System Noise Prediction and Analysis for a Commercial Vehicle with Air Compressor Model

2023-04-11
2023-01-0431
Intake system is an important noise source for commercial vehicles, which has a significant impact on their NVH performance. To predict the intake noise more accurately, a new one-dimensional prediction model is proposed in this paper. An air compressor model is introduced into the traditional model, and the acoustic properties of the intake system are simulated by GT-power. The simulation data of the inlet noise is obtained to make a comparison with the inlet noise data acquired from a test. The result shows that the proposed model can make a more precise prediction of the inlet noise. Compared with the traditional model, the proposed model can identify the noise coming from the air compressor, and achieve a more accurate prediction of the total sound pressure level of the inlet noise.
Journal Article

Estimation of Tire-road Friction Limit with Low Lateral Excitation Requirement Using Intelligent Tire

2023-04-11
2023-01-0755
Tire-road friction condition is crucial to the safety of vehicle driving. The emergence of autonomous driving makes it more important to estimate the friction limit accurately and at the lowest possible excitation. In this paper, an early detection method of tire-road friction coefficient based on pneumatic trail under cornering conditions is proposed using an intelligent tire system. The previously developed intelligent tire system is based on a triaxial accelerometer mounted on the inner liner of the tire tread. The friction estimation scheme utilizes the highly sensitive nature of the pneumatic trail to the friction coefficient even in the linear region and its approximately linear relationship with the excitation level. An indicator referred as slip degree indicating the utilization of the road friction is proposed using the information of pneumatic trail, and it is used to decide whether the excitation is sufficient to adopt the friction coefficient estimate.
Journal Article

Refinements of the Dynamic Inversion Part of Hierarchical 4WIS/4WID Trajectory Tracking Controllers

2023-04-11
2023-01-0907
To tackle the over-actuated and highly nonlinear characteristics that four-wheel-independent-steering and four-wheel-independent -driving (4WIS/4WID) vehicles exhibit when tracking aggressive trajectory, a hierarchical controller with layers of computation-intensive modules is commonly adopted. The high-level linear motion controller commands the desired state derivatives of the vehicle to meet the overall trajectory tracking objectives. Then the system dynamic is inversed by the mid-level control allocation layer and the low-level wheel control layer to map the target state derivatives to steering angle and motor torque commands. However, this type of controller is difficult to implement on the embedded hardware onboard since the nonlinear dynamic inversion is typically solved by nonlinear programming.
Technical Paper

Visual System Analysis of High Speed On-Off Valve Based on Multi-Physics Simulation

2022-03-29
2022-01-0391
High speed on-off valves (HSVs) are widely used in advanced hydraulic braking actuators, including regenerative braking systems and active safety systems, which take crucial part in improving the energy efficiency and safety performance of vehicles. As a component involving multiple physical fields, the HSV is affected by the interaction of the fields-fluid, electromagnetic, and mechanical. Since the opening of the HSV is small and the flow speed is high, cavitation and vortex are inevitably brought out so that increase the valve’s noise and instability. However, it is costly and complex to observe the flow status by visual fluid experiments. Hence, in this article a visual multi-physics system simulation model of the HSV is explored, in which the flow field model of the HSV built by computational fluid dynamic (CFD) is co-simulated with the model of hydraulic actuator established by AMESim.
Journal Article

Lap Time Optimization and Path Following Control for 4WS & 4WID Autonomous Vehicle

2022-03-29
2022-01-0376
In contrast to a normal vehicle, a 4-wheel steer (4WS) and 4-wheel independent drive (4WID) vehicle provides more flexibilities in vehicle dynamic control and better handling performance, since both the steer angle and drive torque of each wheel can be controlled. However, for motorsports, how much lap time can be improved with such a vehicle is a problem few discussed. So, this paper focuses on the racing line optimization and lap time improvement for a 4WS &4WID vehicle. First, we optimize the racing line and lap time of three given circuits with the genetic algorithm (GA) and interior-point method, and several objective functions are compared. Next, to evaluate the lap time improvement of 4WS & 4WID, a detailed vehicle dynamic model of our 4WS & 4WID platform vehicle is built in Carsim. To follow the racing line, a path following controller which contains a PID speed controller and a model predictive control (MPC) yaw rate controller is built.
Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Technical Paper

Torque Vectoring Control Strategies for Distributed Electric Drive Formula SAE Racing Car

2021-04-06
2021-01-0373
This paper presents a two-layer torque vectoring control strategy for the Formula SAE racing car of Tsinghua University to enhance steering response, lateral stability and track performance. Firstly, the dynamic model of the existing FSAE car is built as parameters of tires, suspensions, motors and aerodynamics are measured and identified. Secondly, this paper develops a two-layer torque vectoring strategy, the upper-layer direct yaw moment (DYC) controller and the lower-layer torque distribution controller are developed in Simulink. The upper-layer sliding mode control DYC controller calculates the target additional yaw moment according to the target yaw rate based on the two-degree-of-freedom (2DOF) reference model, and the sideslip angle is constrained as well.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Technical Paper

Dynamic Load Identification for Battery Pack Bolt Based on Machine Learning

2020-04-14
2020-01-0865
Batteries are exposed to dynamic load during vehicle driving. It is significant to clarify the load input of the battery system during vehicle driving for battery pack structural design and optimization. Currently, bolt connection is mostly applied for battery pack constraint to vehicle, as well as for module assembly inside the pack. However, accurate bolt load is always difficult to obtain, while directly force measurement is expensive and time consuming in engineering. In this paper, a precise data driven model based on Elman neural network is established to identify the dynamic bolt loads of the battery pack, using tested acceleration data near bolts. The dynamic bolt force data is measured at the same time with the acceleration data during vehicle running in different driving conditions, utilizing customized bolt force sensors.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

2019-11-04
2019-01-5034
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
X