Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Analysis of Ball Bearings

2009-10-06
2009-36-0057
The development area of the bearing's industry constantly searches for a better efficiency and a lower film oil thickness in surfaces with high roughness under relative motion. In these cases, operational conditions like high loads and temperatures, as well as low safety margins for weight and size, considering the lubricant viscosity, should be taken into account as fundamental design parameters. In order to know better the elastohydrodinamic lubrication effect, firstly, it is necessary to understand deeply and accurately the applied loads on the ball element bearings. For this purpose, the accurate analysis and study of the performance of these machine components is carried out, using analytical methods and giving special focus on the velocities and accelerations involved, as well as different types of loads applied on the ball element and their distribution and consequences during the ball motion inside the bearing rings.
Technical Paper

Methodology Development based on Robust Design and Sensitivity Parametric Analysis to Machine Components

2002-11-19
2002-01-3417
Technological systems are designed to carry out very specific functions. Because of that, their components should have measurements that can guarantee their operability within the range of precision. Furthermore, the current systems are inherent parts of design involving multi-disciplinary aspects. Their development and analysis expose the designer to a series of unknown parameters from several sources such as material properties, environmental and operational conditions. Therefore, the qualification and quantification of these inherent sources of design uncertainties become very important in several aspects in the context of design development and so, a system is reliable and robust if it allows a certain range of uncertainties before the first failure occurs. With this in mind, we propose here the development of a methodology that can identified the sources of uncertainties and parameters that largely influence the whole design.
X