Refine Your Search

Topic

Author

Search Results

Technical Paper

Surface Contamination Simulation for a Military Ground Vehicle

2019-04-02
2019-01-1075
Vehicle surface contamination can degrade not only soldier vision but also the effectiveness of camera and sensor systems mounted externally on the vehicle for autonomy and situational awareness. In order to control vehicle surface contamination, a better understanding of dust particle generation, transport and accumulation is necessary. The focus of the present work is simulation of vehicle surface contamination on the rear part of the vehicle due to the interaction of the combat vehicle track with the ground and dust in the surrounding ambient atmosphere. A notional tracked military vehicle is used for the Computational fluid dynamics (CFD) simulation. A CFD methodology with one-way-coupled Lagrangian particle modeling is used. The simulation is initially run with only air flow to solve the air pressure, velocity, and turbulence quantities in a steady state condition.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells

2018-04-03
2018-01-0798
Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance.
Journal Article

A Hybrid Thermal Bus for Ground Vehicles Featuring Parallel Heat Transfer Pathways

2018-04-03
2018-01-1111
Improved propulsion system cooling remains an important challenge in the transportation industry as heat generating components, embedded in ground vehicles, trend toward higher heat fluxes and power requirements. The further minimization of the thermal management system power consumption necessitates the integration of parallel heat rejection strategies to maintain prescribed temperature limits. When properly designed, the cooling solution will offer lower noise, weight, and total volume while improving system durability, reliability, and power efficiency. This study investigates the integration of high thermal conductivity (HTC) materials, carbon fibers, and heat pipes with conventional liquid cooling to create a hybrid “thermal bus” to move the thermal energy from the heat source(s) to the ambient surroundings. The innovative design can transfer heat between the separated heat source(s) and heat sink(s) without sensitivity to gravity.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Journal Article

Simulating the Mobility of Wheeled Ground Vehicles with Mercury

2017-03-28
2017-01-0273
Mercury is a high-fidelity, physics-based object-oriented software for conducting simulations of vehicle performance evaluations for requirements and engineering metrics. Integrating cutting-edge, massively parallel modeling techniques for soft, cohesive and dry granular soil that will integrate state-of-the-art soil simulation with high-fidelity multi-body dynamics and powertrain modeling to provide a comprehensive mobility simulator for ground vehicles. The Mercury implements the Chrono::Vehicle dynamics library for vehicle dynamics, which provides multi-body dynamic simulation of wheeled and tracked vehicles. The powertrain is modeled using the Powertrain Analysis Computational Environment (PACE), a behavior-based powertrain analysis based on the U.S. Department of Energy’s Autonomie software. Vehicle -terrain interaction (VTI) is simulated with the Ground Contact Element (GCE), which provides forces to the Chrono-vehicle solver.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Journal Article

Fire Suppression Modeling & Simulation Framework for Ground Vehicles

2017-03-28
2017-01-1351
The US Army Tank Automotive Research, Development and Engineering Center (TARDEC) has developed a unique physics based modeling & simulation (M&S) capability using Computational Fluid Dynamics (CFD) techniques to optimize automatic fire extinguishing system (AFES) designs and complement vehicle testing for both occupied and unoccupied spaces of military ground vehicles. The modeling techniques developed are based on reduced global kinetics for computational efficiency and are applicable to fire suppressants that are being used in Army vehicles namely, bromotrifluoromethane (Halon 1301), heptafluoropropane (HFC-227ea, trade name FM200), sodium-bicarbonate (SBC) powder, water + potassium acetate mixture, and pentafluoroethane (HFC-125, trade name, FE-25). These CFD simulations are performed using High Performance Computers (HPC) that enable the Army to assess AFES designs in a virtual world at far less cost than physical-fire tests.
Journal Article

Development of a Stationary Axle Efficiency Test Stand and Methodology for Identifying Fuel Efficient Gear Oils for Military Applications - Part 1

2017-03-28
2017-01-0889
For existing fleets such as the U.S. military ground vehicle fleet, there are few ways to reduce vehicle fuel consumption that don’t involve expensive retrofitting. Replacing standard lubricants with those that can achieve higher vehicle efficiencies is one practical and inexpensive way to improve fleet fuel efficiency. In an effort to identify axle gear lubricants that can reduce the fuel consumption of its fleet, the U.S. Army is developing a stationary axle efficiency test stand and procedure. In order to develop this capability, on-track vehicle fuel consumption testing was completed using light, medium, and heavy tactical wheeled vehicles following a modified SAE J1321 type test procedure. Tested lubricants included a baseline SAE 80W-90, a fuel efficient SAE 75W-90, and a fuel efficient SAE 75W-140. Vehicle testing resulted in reductions in fuel consumption of up to 2%.
Technical Paper

Faster Method of Simulating Military Vehicles Exposed to Fragmenting Underbody IED Threats

2017-03-28
2017-01-0264
In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today [1]. Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) [2, 9] and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
Technical Paper

What Is a Ton of Weight Worth? A Discussion of Military Ground System Weight Considerations

2017-03-28
2017-01-0270
The recently published Lightweight Combat Vehicle Science and Technology Campaign [1] recommended the Army develop a quantitative understanding of the operational impact that weight reduction has to the Army and create appropriate metrics that would better reflect the performance trade with regards to weight. That paper raised the question of what a ton of weight is worth in operational effectiveness and cost. This paper is an attempt to clarify this complex topic. The impact of select programmatic considerations, operational considerations, and financial considerations are discussed. Throughout, the paper provides example analyses based on vehicle weight, performance, and cost data. The paper closes with a discussion of the issues presented, research recommendations, and closing comments.
Technical Paper

Development of A New Dynamic Rollover Test Methodology for Heavy Vehicles

2017-03-28
2017-01-1457
Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
Journal Article

Time-Dependent Reliability Analysis Using a Modified Composite Limit State Approach

2017-03-28
2017-01-0206
Recent developments in time-dependent reliability have introduced the concept of a composite limit state. The composite limit state method can be used to calculate the time-dependent probability of failure for dynamic systems with limit-state functions of input random variables, input random processes and explicit in time. The probability of failure can be calculated exactly using the composite limit state if the instantaneous limit states are linear, forming an open or close polytope, and are functions of only two random variables. In this work, the restriction on the number of random variables is lifted. The proposed algorithm is accurate and efficient for linear instantaneous limit state functions of any number of random variables. An example on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates the accuracy of the proposed general composite limit state approach.
Journal Article

Near Automatic Translation of Autonomie-Based Power Train Architectures for Multi-Physics Simulations Using High Performance Computing

2017-03-28
2017-01-0267
The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

2016-09-27
2016-01-8041
Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
X