Refine Your Search



Search Results

Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

Measurement Approaches for Variable Compression Ratio Systems

In the ongoing competition of powertrain concepts the Internal Combustion Engine (ICE) will also have to demonstrate its potential for increased efficiency [1]. Variable Compression Ratio (VCR) Systems for Internal Combustion Engines (ICE) can make an important contribution to meeting stringent global fuel economy and CO2 standards. Using such technology a CO2 reduction of between 5% and 9% in the World Harmonized Light-Duty Vehicle Test Cycle (WLTC) are achievable, depending on vehicle class, load profile and power rating [2]. This paper provides a detailed description of the measurement approaches that are used during development of the AVL Dual Mode VCSTM and other VCR systems in fired operation. Results obtained from these measurements are typically used to calibrate or verify simulation models, which themselves are an integral part of the development of these systems [3].
Technical Paper

Future Diesel-Powertrain in LCV and SUV-Electrified, Modular Platform with Focus on Emission, Efficiency and Cost

Considering worldwide future emission and CO2-legislation for the Light Commercial Vehicle segment, a wide range of powertrain variants is expected. Dependent on the application use cases all powertrain combinations, from pure Diesel engine propulsion via various levels of hybridization, to pure battery electric vehicles will be in the market. Under this aspect as well as facing differing legal and market requirements, a modular approach is presented for the LCV and SUV Segment, which can be adapted flexibly to meet the different requirements. A displacement range of 2.0L to 2.3L, representing the current baseline in Europe is taken as basis. To best fulfill the commercial boundaries, tailored technology packages, based on a common global engine platform are defined and compared. These packages include engine related technical features for emission- and fuel consumption improvement, as well as electrification measures, in particular 48V-MHEV variants.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
Technical Paper

Model Based Assessment of Real-Driving Emissions - A Variation Study on Design and Operation Parameter

In 2017 the European authorities put into effect the first part of a new certification test procedure for Real Driving Emissions (RDE). Similar tests are planned in other regions of the world, such as the upcoming China 6a/6b standards, further tightening emission limits, and also the introduction of RDE tests. Both restrictions pose challenging engineering tasks for upcoming vehicles. RDE certification tests feature significantly more demanding engine operating conditions and thus, emit more pollutants by orders of magnitude compared to known cycles like NEDC. Here, especially the reduction of NOx is a specific technical challenge, as it needs to compromise also with reduction targets on carbon dioxide. The fulfilment of both emission limits requires a widening of the focus from an isolated engine or exhaust aftertreatment view to a system engineering view involving all hardware and software domains of the vehicle.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Technical Paper

Model-Based Approach for Engine Performance Optimization

State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

The Dual Mode VCS Conrod System – Functional Development and Oil Investigations

Variable Compression Systems (VCS) for Internal Combustion Engines (ICE) will become increasingly more important in the future to meet stringent global fuel economy and CO2 standards. A Dual Mode VCS is in development at AVL and the basic functionality and potential were described in a technical paper which was presented at the SAE WCX 2017 [1]. The system is based on a hydraulically switched and locked conrod with telescopic shank. The AVL Dual Mode VCS was designed and virtually optimized with CAE simulation methods for the boundary conditions of a typical 2.0 L Inline (I) 4 Turbocharged Gasoline Direct Injection (TGDI) engine representing state-of-the-art gasoline engine technology for the next years to come.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2

In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
Journal Article

Development and Validation of a Quasi-Dimensional Dual Fuel (Diesel – Natural Gas) Combustion Model

This paper presents a newly developed quasi-dimensional multi-zone dual fuel combustion model, which has been integrated within the commercial engine system simulation framework. Model is based on the modified Multi-Zone Combustion Model and Fractal Combustion Model. Modified Multi-Zone Combustion Model handles the part of the combustion process that is governed by the mixing-controlled combustion, while the modified Fractal Combustion Model handles the part that is governed by the flame propagation through the combustion chamber. The developed quasi-dimensional dual fuel combustion model features phenomenological description of spray processes, i.e. liquid spray break-up, fresh charge entrainment, droplet heat-up and evaporation process. In order to capture the chemical effects on the ignition delay, special ignition delay table has been made.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.