Refine Your Search

Search Results

Viewing 1 to 20 of 20
Journal Article

Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine

2015-04-14
2015-01-0952
The effect of fuel physical properties on the ignition and combustion characteristics of diesel fuels was investigated in a heavy-duty 2.52 L single-cylinder engine. Two binary component fuels, one comprised of farnesane (FAR) and 2,2,4,4,6,8,8-heptamethylnonane (HMN), and another comprised of primary reference fuels (PRF) for the octane rating scale (i.e. n-heptane and 2,2,4-trimethylpentane), were blended to match the cetane number (CN) of a 45 CN diesel fuel. The binary mixtures were used neat, and blended at 25, 50, and 75% by volume with the baseline diesel. Ignition delay (ID) for each blend was measured under identical operating conditions. A single injection was used, with injection timing varied from −12.5 to 2.5 CAD. Injection pressures of 50, 100, and 150 MPa were tested. Observed IDs were consistent with previous work done under similar conditions with diesel fuels. The shortest IDs were seen at injection timings of −7.5 CAD.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

2014-04-01
2014-01-1297
The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
Journal Article

Comparison of Particulate Size Distributions from Advanced and Conventional Combustion - Part I: CDC, HCCI, and RCCI

2014-04-01
2014-01-1296
Comparison of particulate size distribution measurements from different combustion strategies was conducted with a four-stroke single-cylinder diesel engine. Measurements were performed at four different load-speed points with matched combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer (SMPS). To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The use of a single testing platform enables quantitative comparison between combustion strategies since background sources of particulate are held constant. A large number of volatile particles were present under low dilution ratio sample conditions for most of the operating conditions. To avoid the impact of volatile particles, comparisons were made based on the high dilution ratio measurements with the thermodenuder.
Journal Article

Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel

2013-04-08
2013-01-0264
A single-cylinder light-duty diesel engine was used to investigate dual fuel reactivity controlled compression ignition (RCCI) operated with two different fuel combinations: gasoline/diesel fuel and methanol/diesel fuel. The engine was operated over a range of conditions, from 1500 to 2300 rpm and 3.5 to 17 bar gross IMEP. Using the stock re-entrant piston bowl geometry, both fuel combinations were able to achieve low NOx and PM emissions with a peak gross indicated efficiency of 48%. However, at light load conditions both gasoline and methanol yielded poorer combustion efficiencies. Previous studies have shown that the high-levels of piston induced mixing that are created by the stock piston are not required, and in fact are detrimental due to increased heat transfer losses, for premixed combustion. Thus a modified piston featuring a shallow, flat piston bowl with nearly no squish land was also investigated.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Technical Paper

Heavy Duty HCPC

2011-08-30
2011-01-1824
This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. It was named Homogenous Charge Progressive Combustion (HCPC) and operates on the split-cycle principle. In previous papers the feasibility of this combustion concept was shown for light-duty diesel engines. This paper illustrates a CFD study concerning a heavy-duty version of the HCPC engine. The engine displaces 13 liters and develops 700 kW indicated power at 2200 rpm with 49% maximum indicated efficiency and clean combustion.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Technical Paper

Coupling of Scaling Laws and Computational Optimization to Develop Guidelines for Diesel Engine Down-sizing

2011-04-12
2011-01-0836
The present work proposes a methodology for diesel engine development using scaling laws and computational optimization with multi-dimensional CFD tools. A previously optimized 450cc HSDI diesel engine was down-scaled to 400cc size using recently developed scaling laws. The scaling laws were validated by comparing the performance of these two engines, including pressure, HRR, peak and averaged temperature, and pollutant emissions. A novel optimization methodology, which is able to simultaneously optimize multiple operating conditions, was proposed. The method is based on multi-objective genetic algorithms, and was coupled with the KIVA3V Release 2 code to further optimize the down-scaled diesel engine. An adaptive multi-grid chemistry model was used in the KIVA3V code to reduce the computational cost of the optimization. The computations were conducted using high-throughput computing with the CONDOR system.
Journal Article

Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties

2011-04-12
2011-01-0831
Biodiesel-fueled engine simulations were performed using the KIVA3v-Release 2 code coupled with Chemkin-II for detailed chemistry. The model incorporates a reduced mechanism that was created from a methyl decanoate/methyl-9-decenoate mechanism developed at the Lawrence Livermore National Laboratory. A combination of Directed Relation Graph, chemical lumping, and limited reaction rate tuning was used to reduce the detailed mechanism from 3299 species and 10806 reactions to 77 species and 209 reactions. The mechanism was validated against its detailed counterpart and predicted accurate ignition delay times over a range of relevant operating conditions. The mechanism was then combined with the ERC PRF mechanism to include n-heptane as an additional fuel component. The biodiesel mechanism was applied in KIVA using a discrete multi-component model with accurate physical properties for the five common components of real biodiesel fuel.
Technical Paper

Effects of Cetane Number on Jet Fuel Combustion in a Heavy-Duty Compression Ignition Engine at High Load

2011-04-12
2011-01-0335
The effects of jet fuel properties on compression ignition engine operation were investigated under high-load conditions for jet fuels with varying cetane number. A single-cylinder oil-test engine (SCOTE) with 2.44 L displacement was used to test a baseline #2 diesel fuel with a cetane number of 43, a Jet-A fuel with a cetane number of 47, and two mixtures of Jet-A and a Fishcer-Tropsch JP-8 with cetane numbers of 36 and 42, respectively. The engine was operated under high-load conditions corresponding to traditional diesel combustion, using a single injection of fuel near TDC. The fuels were tested using two different intake camshafts with closing times of -143 and -85 CAD BTDC. Injection timing sweeps were performed over a range of injection timings near TDC for each camshaft. The apparent net heat release rate (AHRR) data showed an increase in the premixed burn magnitude as cetane number decreased in agreement with previous work.
Technical Paper

Sources and Tradeoffs for Transient NO and UHC Emissions with Low Temperature Diesel Combustion

2011-04-12
2011-01-1356
High bandwidth transient data from a multi-cylinder diesel engine operating in a low temperature combustion regime was analyzed to identify and characterize the transient response behaviors primarily responsible for transient emissions of NO and UHC. Numerous different speed and load transients as well as different combustion modes and control strategies were studied to determine how these parameters affect transient performance. Limitations in the transient response of the air system were found to be the largest contributor to transient emissions, although the mechanism by which these limitations affect performance can vary greatly depending on conditions. Analysis of the data shows that transient emissions for low temperature combustion strategies are highly dependent on cycle-to-cycle changes in intake charge conditions. No fundamental difference was observed between the transient processes controlling speed and load changes.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Technical Paper

Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion

2010-04-12
2010-01-0337
The objective of this study is to increase fundamental understanding of the effects of fuel composition and properties on low temperature combustion (LTC) and to identify major properties that could enable engine performance and emission improvements, especially under high load conditions. A series of experiments and computational simulations were conducted under LTC conditions using 67% EGR with 9.5% inlet O₂ concentration on a single-cylinder version of the General Motors Corporation 1.9L direct injection diesel engine. This research investigated the effects of Cetane number (CN), volatility and total aromatic content of diesel fuels on LTC operation. The values of CN, volatility, and total aromatic content studied were selected in a DOE (Design of Experiments) fashion with each variable having a base value as well as a lower and higher level. Timing sweeps were performed for all fuels at a lower load condition of 5.5 bar net IMEP at 2000 rpm using a single-pulse injection strategy.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

Experimental Determination of Local H/C Ratio and Hydrogen-Particulate

1982-02-01
820362
An intermittent sampling valve was used to investigate local fuel H/C ratio and species concentrations in an operating DI diesel engine. Additionally, predictions of carbon and hydrogen originating from particulates and nonmethane hydrocarbons (carbon and hydrogen remainders) were made by calculation. Sample H/C ratio was used to assess local fuel phase as gaseous or liquid. Evidence of intermediate species quenching in the lean region between spray plumes was found under low swirl. Reduction in the rate of penetration under high swirl may account for the observed loss in efficiency under this condition.
X