Refine Your Search

Topic

Author

Search Results

Technical Paper

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

2019-09-09
2019-24-0184
With more focus on real world emissions from light-duty vehicles, the interactions between engine and after-treatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel Air-fuel-ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part I: Experimental Plan, Development of the Software Tools and Measurement Systems

2019-01-15
2019-01-0075
Wankel rotary engines are becoming an increasingly popular area of research with regard to their use as a range extender in the next generation of Hybrid Electric Vehicle (HEV). Due to their simple design, lightness, compactness and very favourable power-to-weight ratio, they represent one of the best alternative solutions to classic reciprocating piston engines. On the other hand, current Wankel engines still need improvements in terms of specific fuel consumption and emissions. This paper describes an innovative approach for the assessment of the performance of a modern rotary engine. All the experimental activities will be carried out within the Innovate UK funded ADAPT Intelligent Powertrain project led by Westfield Sportscars Limited.
Technical Paper

Factors Affecting Test Precision in Latest Vehicle Technologies

2018-04-03
2018-01-0640
Demonstrating the cost/benefits of technologies in the automotive sector is becoming very challenging because the benefits from technologies are sometimes of similar magnitude to testing precision. This paper aims to understand vehicle-borne imprecision and the effect of this on the quality of chassis dynamometer (CD) testing. Fuel consumption and NOx emissions precision is analyzed for two diesel vehicles with particulate filter and SCR systems. The two vehicles were tested on a high precision CD facility over the NEDC (New European Drive Cycle) and WLTC (World harmonized Light-duty Test Cycle) cycles. The CD base precision of testing was characterized between 0.6-3% depending on the cycle phase. A novel application of multi-variate statistical analysis was used to identify the factors that affected testing precision, allowing isolation of small differences that were not obvious when conducting cycle-averaged or cycle-phase-averaged analysis.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

Position Estimation and Autonomous Control of a Quad Vehicle

2016-09-14
2016-01-1878
The major contribution of this paper is the general description of a complete integrating procedure of autonomous vehicle system. Using Robot Operating System (ROS) as the framework, process from senor integration to path planning and path tracking were performed. Based on an off-road All-Terrain Vehicle, an Extended Kalman filter based autonomous control strategy was developed on the ROS. Both the position estimation and autonomous control were performed on the ROS platform. For the position estimation phase, sensory measurements from GPS, IMU and wheel odometry were acquired and processed on ROS. In accordance with the ROS architecture, separate packages were developed for each sensor to gather and publish corresponding measurements. Furthermore, Extended Kalman filtering was performed to fuse all sensory measurements to achieve an optimizing accuracy.
Technical Paper

A Study on Dynamic Torque Cancellation in a Range Extender Unit

2016-04-05
2016-01-1231
A range extended electric vehicle (REEV) has the benefit of zero pipeline emission for most of the daily commute driving using the full electric mode while maintaining the capability for a long-range trip without the requirement of stop-and-charge. This capability is provided by the on-board auxiliary power unit (APU) which is used to maintain the battery state of charge at a minimum limit. Due to the limited APU package size, a small capacity engine with low-cylindercount is normally used which inherently exposes more severe torque pulsation, that arises from a low firing frequency. By using vector control, it is feasible to vary the generator in-cycle torque to counteract the engine torque oscillation dynamically. This allows for a smoother operation of the APU with the possibility of reducing the size of the engine flywheel. In this paper, a series of motor/generator control torque patterns were applied with the aim of cancelling the engine in-cycle torque pulses.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation

2015-11-17
2015-32-0816
Exhaust Gas Recirculation (EGR) is widely used in IC combustion engines for diluting air intake charge and controlling NOx emission. The rate of EGR required by an engine varies by the speed and load and control of the right amount entering the cylinders is crucial to ensure good engine performance and low NOx emission. However, controlling the amount of EGR entering the intake manifold does not ensure that EGR rate will be evenly distributed among the engine's cylinders. This can many times lead to cylinders operating at very high or low EGR rates which contradictory can deteriorate particulate matter and NOx emission. The present study analyses the cylinder-to-cylinder EGR dispersion of a 4 cylinder 2.2L EUROV Diesel engine and its effects on the combustion stability. A 1D-3D coupling simulation is performed using GT-Power and STAR-CCM+ to analyze the effects of intake manifold geometry and EGR supply configuration on the EGR homogeneity and cylinder-to-cylinder distribution.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

Modelling the Performance of the Torotrak V-Charge Variable Drive Supercharger System on a 1.0L GTDI - Preliminary Simulation Results

2015-09-01
2015-01-1971
A supercharger system which boosts the engine via a direct drive from the engine crankshaft has been identified as a possible solution to improve low-end torque and transient response for a conventional turbocharged SI engine. However, the engine equipped with a fixed-ratio supercharger is not as fuel-efficient especially at high load and low speed due to the fact that a large portion of the intake mass air flow has to recirculate through a bypass valve causing inevitable mechanical and flow losses. In addition, the fixed drive ratio of the supercharger which is mainly determined by the full-load requirements might not be able to provide sufficient over-boost during a transient. The fact that a clutch may be necessary for high engine speed operation on the fixed-ratio supercharger system is another issue from the perspective of cost and NVH performance.
Technical Paper

Explore and Extend the Effectiveness of Turbo-compounding in a 2.0 litres Gasoline Engine

2015-04-14
2015-01-1279
After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

Turbocharger Dynamic Performance Prediction by Volterra Series Model

2014-10-13
2014-01-2558
Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell.
Technical Paper

Empirical Lumped-mass Approach to Modelling Heat Transfer in Automotive Turbochargers

2014-10-13
2014-01-2559
When evaluating the performance of new boosting hardware, it is a challenge to isolate the heat transfer effects inherent within measured turbine and compressor efficiencies. This work documents the construction of a lumped mass turbocharger model in the MatLab Simulink environment capable of predicting turbine and compressor metal and gas outlet temperatures based on measured or simulated inlet conditions. A production turbocharger from a representative 2.2L common rail diesel engine was instrumented to enable accurate gas and wall temperature measurements to be recorded under a variety of engine operating conditions. Initially steady-state testing was undertaken across the engine speed and load range in order that empirical Reynolds-Nusselt heat transfer relationships could be derived and incorporated into the model. Steady state model predictions were validated against further experimental data.
Technical Paper

Behaviours of a GDI Gasoline Engine during Start

2014-04-01
2014-01-1374
Vehicle start-stop systems are becoming increasingly prevalent on internal combustion engine (ICE) because of the capability to reduce emissions and fuel consumption in a cost effective manner. Thus, the ICE undergoes far more starting events, therefore, the behaviour of ICE during start-up becomes critical. In order to simulate and optimise the engine start, Model in the Loop (MiL) simulation approach was selected. A proceduralised cranking test has been carried out on a 2.0-liter turbocharged, gasoline direct injection (GDI) engine to collect data. The engine behaviour in the first 15 seconds was split into eight different phases and studied. The engine controller and the combustion system were highly transient and interactive. Thus, a controller model that can set accurate boundary conditions is needed. The relevant control functions of throttle opening and spark timing have been implemented in Matlab/Simulink to simulate the behaviours of the controller.
X