Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Technology Comparison for Spark Ignition Engines of New Generation

2017-09-04
2017-24-0151
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real conditions fuel economy, higher torque, higher specific power and lower cost. To reach the requirements coming from the end-users and legislations, especially for SI engines, several technologies are available, such as downsizing, including turbocharging in combination with direct injection. These technologies allow to solve the main issues of gasoline engines in terms of efficiency and performance which are knocking, part-load losses, and thermal stress at high power conditions. Moreover, other possibilities are under evaluation to allow further steps of enhancement for the even more challenging requirements. However, the benefits and costs given by the mix of these technologies must be accurately evaluated by means of objective tools and procedures in order to choose among the best alternatives.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

2017-03-28
2017-01-0785
In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
X