Refine Your Search

Topic

Author

Search Results

Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
Technical Paper

Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis

2019-04-02
2019-01-0266
The vehicle WLTP and RDE homologation test cycles are pushing the engine technology toward the implementation of different solutions aimed to the exhaust gases emission reduction. The tightening of the policy on the Auxiliary Emission Strategy (A.E.S.), including those for the engine component protection, faces the Spark Ignited (S.I.) engines with the need to replace the fuel enrichment as a means to cool down both unburnt mixture and exhaust gases to accomplish with the inlet temperature turbine (TiT) limit. Among the whole technology solutions conceived to make SI engine operating at lambda 1.0 on the whole operation map, the water injection is one of the valuable candidates. Despite the fact that the water injection has been exploited in the past, the renewed interest in it requires a deep investigation in order to outcome its potential as well as its limits.
Technical Paper

Review of Combustion Indexes Remote Sensing Applied to Different Combustion Types

2019-04-02
2019-01-1132
This paper summarizes the main studies carried out by the authors for the development of indexes for remote combustion sensing applicable to different combustion types, i.e. conventional gasoline and diesel combustions, diesel PCCI and dual fuel gasoline-diesel RCCI. It is well-known that the continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world, both for pollutants and CO2 emissions. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. Over the past years, the authors of this paper have developed several techniques to estimate the most important combustion indexes for combustion control, without using additional cylinder pressure sensors but only using the engine speed sensor (always available on board) and accelerometers (usually available on-board for gasoline engines).
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Technical Paper

Parametric Analysis of the Effect of the Fluid Properties and the Mesh Setup by Using the Schnerr-Sauer Cavitation Model

2017-09-04
2017-24-0105
The primary target of the internal combustion engines design is to lower the fuel consumption and to enhance the combustion process quality, in order to reduce the raw emission levels without performances penalty. In this scenario the direct injection system plays a key role for both diesel and gasoline engines. The spray dynamic behaviour is crucial in defining the global and the local air index of the mixture, which in turns affects the combustion process development. At the same time it is widely recognized that the spray formation is influenced by numerous parameters, among which also the cavitation process inside every single hole of the injector nozzle. The proper prediction of the cavitation development inside the injector nozzle holes is crucial in predicting the liquid jet emerging from them.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Journal Article

Assessment of the Influence of GDI Injection System Parameters on Soot Emission and Combustion Stability through a Numerical and Experimental Approach

2015-09-06
2015-24-2422
The next steps of the current European and US legislation, EURO 6c and LEV III, and the incoming new test cycles will impose more severe restrictions on pollutant emissions for Gasoline Direct Injection (GDI) engines. In particular, soot emission limits will represent a challenge for the development of this kind of engine concept, if injection and after-treatment systems costs are to be minimized at the same time. The paper illustrates the results obtained by means of a numerical and experimental approach, in terms of soot emissions and combustion stability assessment and control, especially during catalyst-heating conditions, where the main soot quantity in the test cycle is produced. A number of injector configurations has been designed by means of a CAD geometrical analysis, considering the main effects of the spray target on wall impingement.
Journal Article

Relating Knocking Combustions Effects to Measurable Data

2015-09-06
2015-24-2429
Knocking combustions heavily influence the efficiency of Spark Ignition engines, limiting the compression ratio and sometimes preventing the use of Maximum Brake Torque (MBT) Spark Advance (SA). A detailed analysis of knocking events can help in improving the engine performance and diagnostic strategies. An effective way is to use advanced 3D Computational Fluid Dynamics (CFD) simulation for the analysis and prediction of the combustion process. The standard 3D CFD approach based on RANS (Reynolds Averaged Navier Stokes) equations allows the analysis of the average engine cycle. However, the knocking phenomenon is heavily affected by the Cycle to Cycle Variation (CCV): the effects of CCV on knocking combustions are then taken into account, maintaining a RANS CFD approach, while representing a complex running condition, where knock intensity changes from cycle to cycle.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

The Effect of the Throttle Valve Rotational Direction on the Tumble Motion at Different Partial Load Conditions

2015-04-14
2015-01-0380
In PFI and GDI engines the tumble motion is the most important charge motion for enhancing the in-cylinder turbulence level at ignition time close to the spark plug position. In the open literature different studies were reported on the tumble motion, experimental and not. In the present paper the research activity on the tumble generation at partial load and very partial load conditions was presented. The added value of the analysis was the study of the effect of the throttle valve rotational direction on the tumble motion and the final level of turbulence at the ignition time close to the spark plug location. The focus was to determine if the throttle rotational direction was crucial for the tumble ratio and the turbulence level. The analyzed engine was a PFI 4-valves motorcycle engine. The engine geometry was formed by the intake duct and the cylinder. The CFD code was FIRE AVL code 2013.1.
Journal Article

Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications

2015-01-14
2015-26-0090
The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
Technical Paper

Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing

2014-11-11
2014-32-0048
Faster combustion and lower cycle-to-cycle variability are mandatory tasks for naturally aspirated engines to reduce emission levels and to increase engine efficiency. The promotion of a stable and coherent tumble structure is considered as one of the best way to promote the in-cylinder turbulence and therefore the combustion velocity. During the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
X