Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

An Experimental Study of the Effects of a Nonlinear Store on the Steady-State Dynamics of a Test Airplane

2021-08-31
2021-01-1117
Local nonlinearities can affect the global dynamics of their linear host structures. In the context of fixed-wing aircraft, failure of store mounting can result in strong local nonlinearities. In this work, we experimentally mimic store mounting failure conditions in a model airplane subject to harmonic excitation. Two identical stores are mounted under the wings and are placed symmetrically opposite each other. The configuration where both stores are “locked”, i.e., mounting is very stiff, serves as the baseline linear system. The second configuration involves unlocking one of the stores, enabling a geometrically nonlinear flexure connection between the unlocked store and the wing. The flexure lets the store interact with the first flexible mode of the airplane, resulting in large relative displacements between the store and wing. In addition, the configuration allows for vibro-impacts between the wing and store.
Technical Paper

Development of a New Ejector Performance Map for Design of an Automotive Air Conditioning System

2020-04-14
2020-01-1244
Ejector as a work recovery device offers potential for developing energy efficient heating and cooling systems based on vapor compression technology. For applications like automobile air conditioning, the operating conditions vary significantly which can lead to considerable performance degradation when the system is operated in off-design conditions. Therefore, system designing warrants development of accurate ejector performance models for a wide range of operating conditions. In this paper, a novel methodology for ejector performance maps is proposed using ejector efficiency as performance parameter and volumetric entrainment ratio as characterization parameter. The proposed performance map is developed after conducting experiments to find appropriate performance representation where ejector driven flow can be characterized using ejector motive flow. The developed performance map can predict ejector pressure lift within an accuracy of 20% using an iterative solver.
Journal Article

Visualization Study of the Relationship between the Orientation of Tube and the Flow Regimes Near the Expansion Valve

2020-04-14
2020-01-1256
Several types of noise exist in automobiles. The flow-induced noise in the expansion device can be very disturbing since the expansion device is located near the occupants. In many studies, the flow-induced noise is found to be mitigated when the orientation of the tube is changed. However, no study explores the reason why flow-induced noise changes when the orientation of the tube is changed. The flow-induced noise varies along with the flow regimes near the expansion devices. In this paper, an experimental based research is used to study how the tube orientation changes the flow regimes under the same operating conditions. A pumped R134a system with transparent tubes (1/4-inch ID) is used to visualize the flow regimes near the manual expansion valve. The transparent tube is a continuous connection of horizontal tubes, 45° inclined tubes, and vertical tubes.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
Journal Article

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Technical Paper

Vortex Tube Heat Booster to Improve Performance of Heat Driven Cooling Cycles for Automotive Applications

2016-04-05
2016-01-0245
Increasing energy costs justify research on how to improve utilization of low-grade energy that is abundantly available as waste heat from many thermodynamic processes such as internal combustion engine cycles. One option is to directly generate cooling through absorption/adsorption or vapor jet ejector cycles. As in the case of power generation cycles, cooling cycle efficiencies would increase if the heat input were available at higher temperature. This paper assesses the feasibility of a novel idea that uses a vortex tube to increase the available temperature levels of low-grade heat sources. The desired temperature increase is achieved by sending a stream of vapor that was heated by the waste heat source through a vortex tube, which further elevates the temperature used in a heat driven ejector cooling cycle.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

The High Mounted Brake Lamp - The 4% Solution

1999-03-01
1999-01-0089
The paper reviews some of the underpinnings of the research that was done that led to adoption of the high mounted brake lamp. The expected reduction in rearend collisions of 50%, attributable to the lamp, has not been realized. Most recently, a reduction of 4% was reported. This large difference between the predicted effectiveness of the safety device with its actual effect is disturbing. The paper attempts to show the reasons for the low effectiveness which include a lack of evidence for the high-mounting location, overriding an SAE standard on the intensity of high-mounted rear signal lamps and no valid theory of driver performance.
Technical Paper

Evaluation of Advanced Steering Control with Computer Simulation

1993-09-01
932383
Using neural networks, an algorithm has been developed to steer a wheel loader vehicle. Mathematical functions have been used in the past in an attempt to model a human in their operation of many types of vehicles. Since such functions can typically only be derived for situations in which the problem domain is thoroughly understood, research continues in an effort to develop a complete “operator model”. Neural Network algorithms were utilized in an attempt to determine the feasibility of accurately modeling the operator of a wheel loader construction vehicle. These algorithms were also used to determine how the control of different vehicle functions might be automated on a wheel loader.
Technical Paper

PROPS — An Improved CPM Technique For Project Planning and Control

1965-02-01
650290
Two recent developments in the Critical Path Method (CPM) are presented and discussed. First, the advantages of a CIRCLE notation diagram for the presentation of CPM project plans are described. As opposed to the usual operation-on-the-arrow CPM diagram, a CIRCLE diagram requires no extra “dummy” operations or events to describe the logic of the project, and operation numbers can be assigned before the diagram is drawn. Second, the concept of allowing dependent operations to overlap in time is introduced and evaluated. The operation overlapping technique allows the CPM analysis of a project without an excessive amount of breakdown of the project pieces. This idea seems to offer the link between the bar chart and the ordinary CPM diagram.
X