Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

A Study of Age-Related Thoracic Injury in Frontal Crashes using Analytic Morphomics

2018-04-03
2018-01-0549
The purpose of this study was to use detailed medical information to evaluate thoracic injuries in elderly patients in real world frontal crashes. In this study, we used analytic morphomics to predict the effect of torso geometry on rib fracture, a major source of injury for the elderly. Analytic morphomics extracts body features from computed tomography (CT) scans of patients in a semi-automated fashion. Thoracic injuries were examined in front row occupants involved in frontal crashes from the International Center for Automotive Medicine (ICAM) database. Among these occupants, two age groups (age < 60 yr. [Nonelderly] and age ≥ 60 yr. [Elderly]) who suffered severe thoracic injury were analyzed. Regression analyses were conducted to investigate injury outcomes using variables for vehicle, demographics, and morphomics. Compared to the nonelderly group, the elderly group sustained more rib fractures.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Journal Article

Reduction of Steering Effort in the Event of EPAS Failure using Differential Braking Assisted Steering

2017-03-28
2017-01-1489
Electric Power Assisted Steering (EPAS) is widely adopted in modern vehicles to reduce steering effort. It is probable that some EPAS systems will experience a shutdown due to reliability issues stemming from electrical and/or electronic components. In the event of EPAS failure, power assist becomes unavailable and the steering system reverts to a fully manual state, leading to excessive steering torque demands from the driver to maneuver the vehicle at lower speeds, i.e., under 30 mph. This situation has resulted in dozens of reported crashes and several OEM safety recalls in the past few years. Inspired by recent work which utilizes independent driving torque of in-wheel-motor vehicles to reduce steering torque, this paper proposes the use of Differential Braking Assisted Steering (DBAS) to alleviate steep increases in steering torque upon EPAS failure. DBAS requires software upgrades with minimal hardware modification to EPAS, which is preferable for a backup system.
Journal Article

Accuracy and Robustness of Parallel Vehicle Mass and Road Grade Estimation

2017-03-28
2017-01-1586
A variety of vehicle controls, from active safety systems to power management algorithms, can greatly benefit from accurate, reliable, and robust real-time estimates of vehicle mass and road grade. This paper develops a parallel mass and grade (PMG) estimation scheme and presents the results of a study investigating its accuracy and robustness in the presence of various noise factors. An estimate of road grade is calculated by comparing the acceleration as measured by an on-board longitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds. Mass is independently estimated by means of a longitudinal dynamics model and a recursive least squares (RLS) algorithm using the longitudinal accelerometer to isolate grade effects. To account for the influences of acceleration-induced vehicle pitching on PMG estimation accuracy, a correction factor is developed from controlled tests under a wide range of throttle levels.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

Installed Positions of Child Restraint Systems in Vehicle Second Rows

2015-04-14
2015-01-1452
This study documented the position and orientation of child restraint systems (CRS) installed in the second rows of vehicles, creating a database of 486 installations. Thirty-one different CRS were evaluated, selected to provide a range of manufacturers, sizes, types, and weight limits. Eleven CRS were rear-facing only, fourteen were convertibles, five were combination restraints, and one was a booster. Ten top-selling vehicles were selected to provide a range of manufacturers and body styles: four sedans, four SUVS, one minivan, and one wagon. CRS were marked with three reference points on each moving component. The contours and landmarks of each CRS were first measured in the laboratory. Vehicle interior contours, belt anchors, and LATCH anchors were measured using a similar process. Then each CRS was installed in a vehicle using LATCH according to manufacturers' directions, and the reference points of each CRS component were measured to document the installed orientation.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
Technical Paper

The Quantification of Liver Anatomical Changes and Assessment of Occupant Liver Injury Patterns

2013-11-11
2013-22-0011
Liver injuries can be significant in vehicle crashes. In this study, the liver anatomy was quantified in both adult and pediatric populations as a function of gender and age. Five anatomical liver measurements were determined using CT scans of 260 normal livers. These measurements include the area and volume, and the length, width, and girth of the liver (IRB HUM00041441). To characterize geometrical shape, an inscribed sphere and circumscribed ellipsoid were fitted on the measurements. In the pediatric population the liver area and volume continuously increased with age. When normalized by patient weight, volume measurements show a decrease in volume with age, suggesting that the liver occupies a smaller proportion of the body with age. In the adult population, liver measurements varied with gender. The superior and inferior locations of the liver were also recorded with respect to the spine. The lower portion was at the L3 in small children and at L2 as children approached puberty.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Journal Article

Front Rail Crashworthiness Design for Front Oblique Impact Using a Magic Cube Approach

2013-04-08
2013-01-0651
The front rail, as one main energy absorption component of vehicle front structures, should present steady progressive collapse along its axis and avoid bending collapse during the front oblique impact, but when the angle of loading direction is larger than some critical angle, it will appear bending collapse causing reduced capability of crash energy absorption. This paper is concerned with crashworthiness design of the front rail on a vehicle chassis frame structure considering uncertain crash directions. The objective is to improve the crash direction adaptability of the front rail, without deteriorating the vehicle's crashworthiness performance. Magic Cube (MQ) approach, a systematic design approach, is conducted to analyze the design problem. By applying Space Decomposition of MQ, an equivalent model of the vehicle chassis frame is generated, which simplifies the design problem.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
X