Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

Numerical Modelling of Primary and Secondary Effects of SLD Impingement

2019-06-10
2019-01-2002
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage.
Technical Paper

An Ice Shedding Model for Rotating Components

2019-06-10
2019-01-2003
A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
Technical Paper

Numerical Simulation of Ice Crystal Accretion Inside an Engine Core Stator

2019-06-10
2019-01-2017
A CFD simulation methodology is presented to calculate blockage due to ice crystal icing of the IGV passages of a gas turbine engine. The computational domain consists of six components and includes the nacelle, the full bypass and the air induction section up to the second stage of the low-pressure compressor. The model is of a geared turbofan with a fan that rotates at 4,100 rpm and a low-pressure stage that rotates at 8,000 rpm. The flight conditions are based on a cruising speed of Mach 0.67 in Appendix-D icing conditions with an ice crystal content is 4.24 g/m3. Crystal bouncing, and re-entrainment is considered in the calculations, along with variable relative humidity and crystal melting due to warmer temperatures within the engine core. Total time of icing is set to 20 seconds. The CFD airflow and ice crystal simulations are performed on the full 6-stage domain. The initial icing calculation determines which stage will be chosen for a more comprehensive analysis.
Technical Paper

Numerical Demonstration of the Humidity Effect in Engine Icing

2019-06-10
2019-01-2015
The importance of the variation of relative humidity across turbomachinery engine components for in-flight icing is shown by numerical analysis. A species transport equation for vapor has been added to the existing CFD methodology for the simulation of ice growth and water flow on engine components that are subject to ice crystal icing. This entire system couples several partial differential equations that consider heat and mass transfer between droplets, crystals and air, adding the cooling of the air due to particle evaporation to the icing simulation, increasing the accuracy of the evaporative heat fluxes on wetted walls. Three validation cases are presented for the new methodology: the first one compares with the numerical results of droplets traveling inside an icing tunnel with an existing evaporation model proposed by the National Research Council of Canada (NRC).
X