Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Effective Second Moment of Load Path (ESMLP) Method for Multiaxial Fatigue Damage and Life Assessment

2023-04-11
2023-01-0724
Time-domain and frequency domain methods are two common methods for fatigue damage and life assessment. The frequency domain fatigue assessment methods are becoming increasingly popular recently because of their unique advantages over the traditional time-domain methods. Recently, a series of moment of load path based multiaxial fatigue life assessment approaches have been developed. Among them, the most recently developed effective second moment of load path (ESMLP) approach demonstrates its potentials of conducting fatigue damage and life assessment accurately and efficiently. ESMLP can be used for fatigue analysis even without resorting to cycle counting because of its unique mathematical and physical properties, such as quadratic form in the kernel of the moment integral, rotationally invariant, and being proportional to damage. Developing a better parameter for frequency-domain analysis is the driving force behind the development of ESMLP as a new fatigue damage parameter.
Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Technical Paper

Assessing Driver Distraction: Enhancements of the ISO 26022 Lane Change Task to Make its Difficulty Adjustable

2023-04-11
2023-01-0791
The Lane Change Task (LCT) provides a simple, scorable simulation of driving, and serves as a primary task in studies of driver distraction. It is widely accepted, but somewhat limited in functionality, a problem this project partially overcomes. In the Lane Change Task, subjects drive along a road with 3 lanes in the same direction. Periodically, signs appear, indicating in which of the 3 lanes the subject should drive, which changes from sign to sign. The software is plug-and-play for a current Windows computer with a Logitech steering/pedal assembly, even though the software was written 18 years ago. For each timestamp in a trial, the software records the steering wheel angle, speed, and x and y coordinates of the subject. A limitation of the LCT is that few characteristics of this useful software can be readily modified as only the executable code is available (on the ISO 26022 website), not the source code.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

An In-Cylinder Imaging Study of Pre-chamber Spark-Plug Flame Development in a Single-Cylinder Direct-Injection Spark-Ignition Engine

2023-04-11
2023-01-0254
Prior work in the literature have shown that pre-chamber spark plug technologies can provide remarkable improvements in engine performance. In this work, three passively fueled pre-chamber spark plugs with different pre-chamber geometries were investigated using in-cylinder high-speed imaging of spectral emission in the visible wavelength region in a single-cylinder direct-injection spark-ignition gasoline engine. The effects of the pre-chamber spark plugs on flame development were analyzed by comparing the flame progress between the pre-chamber spark plugs and with the results from a conventional spark plug. The engine was operated at fixed conditions (relevant to federal test procedures) with a constant speed of 1500 revolutions per minute with a coolant temperature of 90 oC and stoichiometric fuel-to-air ratio. The in-cylinder images were captured with a color high-speed camera through an optical insert in the piston crown.
Journal Article

A Standard Set of Courses to Assess the Quality of Driving Off-Road Combat Vehicles

2023-04-11
2023-01-0114
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations.
Technical Paper

Neural Network Model to Predict the Thermal Operating Point of an Electric Vehicle

2023-04-11
2023-01-0134
The automotive industry widely accepted the launch of electric vehicles in the global market, resulting in the emergence of many new areas, including battery health, inverter design, and motor dynamics. Maintaining the desired thermal stress is required to achieve augmented performance along with the optimal design of these components. The HVAC system controls the coolant and refrigerant fluid pressures to maintain the temperatures of [Battery, Inverter, Motor] in a definite range. However, identifying the prominent factors affecting the thermal stress of electric vehicle components and their effect on temperature variation was not investigated in real-time. Therefore, this article defines the vector electric vehicle thermal operating point (EVTHOP) as the first step with three elements [instantaneous battery temperature, instantaneous inverter temperature, instantaneous stator temperature].
Journal Article

Estimates of In-Vehicle Task Element Times for Usability and Distraction Evaluations

2023-04-11
2023-01-0789
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
X