Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

2018-09-10
2018-01-1735
Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Technical Paper

Effects of Engine Speed on Spray Behaviors of the Engine Combustion Network “Spray G” Gasoline Injector

2018-04-03
2018-01-0305
Non-reacting spray behaviors of the Engine Combustion Network “Spray G” gasoline fuel injector were investigated at flash and non-flash boiling conditions in an optically accessible single cylinder engine and a constant volume spray chamber. High-speed Mie-scattering imaging was used to determine transient liquid-phase spray penetration distances and observe general spray behaviors. The standardized “G2” and “G3” test conditions recommended by the Engine Combustion Network were matched in this work and the fuel was pure iso-octane. Results from the constant volume chamber represented the zero (stationary piston) engine speed condition and single cylinder engine speeds ranged from 300 to 2,000 RPM. As expected, the present results indicated the general spray behaviors differed significantly between the spray chamber and engine. The differences must be thoughtfully considered when applying spray chamber results to guide spray model development for engine applications.
Technical Paper

High-Speed Imaging Studies of Gasoline Fuel Sprays at Fuel Injection Pressures from 300 to 1500 bar

2018-04-03
2018-01-0294
High-pressure gasoline fuel injection is a means to improve combustion efficiency and lower engine-out emissions. The objective of this study was to quantify the effects of fuel injection pressure on transient gasoline fuel spray development for a wide range of injection pressures, including over 1000 bar, using a constant volume chamber and high-speed imaging. Reference grade gasoline was injected at fuel pressures of 300, 600, 900, 1200, and 1500 bar into the chamber, which was pressurized with nitrogen at 1, 5, 10, and 20 bar at room temperature (298 K). Bulk spray imaging data were used to quantify spray tip penetration distance, rate of spray tip penetration and spray cone angle. Near-nozzle data were used to evaluate the early spray development.
Technical Paper

Effects of Fuel Injection Events of Ethanol and Gasoline Blends on Boosted Direct-Injection Engine Performance

2017-10-08
2017-01-2238
Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motor octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar.
Journal Article

Effect of Syngas (H2/CO) on SI Engine Knock under Boosted EGR and Lean Conditions

2017-03-28
2017-01-0670
Syngas (synthesis gas) aided combustion from various fuel reforming strategies is of increasing interest in boosted lean burn SI engines due to its impact on dilution tolerance and knock resistance. Due to the interest in reformed fuels, more concrete understanding of how to leverage syngas supplementation under various lean conditions is essential to optimize engine performance and derive the most benefit from the availability of syngas in the combustion process. While the impact of syngas supplementation on combustion stability has been studied adequately, detailed understanding of the impact of syngas on knocking is still limited. Hence, this study investigates the effect of syngas (H2/CO) addition on knock tendency under boosted EGR (Exhaust Gas Recirculation) and air diluted conditions. Syngas amount is controlled on an energy basis from 0% to 15% to compare the difference between EGR and air dilution.
Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
Technical Paper

Extending the Dilution Limit of Spark Ignition Combustion via Fuel Injection during Negative Valve Overlap

2016-04-05
2016-01-0671
Using exhaust gas recirculation (EGR) as a diluent instead of air allows the use of a conventional three-way catalyst for effective emissions reduction. Cooled EGR can also reduce fuel consumption and NOx emissions, but too much cool EGR leads to combustion instability and misfire. Negative valve overlap (NVO) is explored in the current work as an alternative method of dilution in which early exhaust valve closing causes combustion products to be retained in the cylinder and recompressed near top dead center, before being mixed with fresh charge during the intake stroke. The potential for fuel injection during NVO to extend the dilution limit of spark ignition combustion is evaluated in this work using experiments conducted on a 4-cylinder 2.0 L gasoline direct injection engine with variable intake and exhaust valve timing. The results demonstrate fuel injection during NVO can extend the dilution limit, improve brake specific fuel consumption (BSFC), and reduce CO and NOx emissions.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

Direct In-cylinder Injection of Water into a PI Hydrogen Engine

2013-04-08
2013-01-0227
Injecting liquid water into a fuel/air charge is a means to reduce NOx emissions. Such strategies are particularly important to hydrogen internal combustion engines, as engine performance (e.g., maximum load) can be limited by regulatory limits on NOx. Experiments were conducted in this study to quantify the effects of direct injection of water into the combustion chamber of a port-fueled, hydrogen IC engine. The effects of DI water injection on NOx emissions, load, and engine efficiency were determined for a broad range of water injection timing. The amount of water injected was varied, and the results were compared with baseline data where no water injection was used. Water injection was a very effective means to reduce NOx emissions. Direct injection of water into the cylinder reduced NOx emissions by 95% with an 8% fuel consumption penalty, and NOx emissions were reduced by 85% without any fuel consumption penalty.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
X