Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Mixture Motion - Its Effect on Pressure Rise in a Combustion Bomb: A New Look at Cyclic Variation

1968-02-01
680766
Cycle-to-cycle variation of pressure is a common problem in all spark-ignition engines. To examine the suspected influence of mixture-motion on this variation, a study was performed in a constant volume cylindrical bomb in which a jet of propane-air mixture was directed at the initial flame kernel. The rate of pressure rise of the jet-influenced combustion was compared to the rate for combustion in a quiescent mixture. The flame area, obtained using a spark schlieren photographic technique, and the calculated combustion rate were correlated with the pressure rate. The major results were: the rate of pressure rise increased approximately linearly with mixture jet velocity; and the width of the mixture-jet had an effect on the rate of pressure rise. A jet profile width slightly greather than the spark-gap produced the highest rate of pressure rise.
Technical Paper

Experimental Determination of the Dependence of the Minimum Spark Ignition Energy Upon the Rate of Energy Release

1966-02-01
660346
The conventional ignition system utilizing an induction coil produces a spark consisting of a capacitive or high energy rate component and an inductive or low energy rate component. Predominant among conflicting arguments reported in the literature is the argument that the high energy rate component is the more effective for ignition of combustible mixtures. An investigation was conducted to measure the effect of the rate of energy release upon minimum spark ignition energy with electrode spacings greater than the quench distances reported in the literature. Lean, quiescent, propane-air mixtures were studied in a constant volume bomb. Results indicate that the minimum ignition energy decreased as the instantaneous peak power or peak rate of energy release was increased.
X