Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Methodology of Design for Fatigue Using an Accelerated Life Testing Approach with Saddlepoint Approximation

2019-04-02
2019-01-0159
We present an Accelerated Life Testing (ALT) methodology along with a design for fatigue approach, using Gaussian or non-Gaussian excitations. The accuracy of fatigue life prediction at nominal loading conditions is affected by model and material uncertainty. This uncertainty is reduced by performing tests at a higher loading level, resulting in a reduction in test duration. Based on the data obtained from experiments, we formulate an optimization problem to calculate the Maximum Likelihood Estimator (MLE) values of the uncertain model parameters. In our proposed ALT method, we lift all the assumptions on the type of life distribution or the stress-life relationship and we use Saddlepoint Approximation (SPA) method to calculate the fatigue life Probability Density Functions (PDFs).
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Technical Paper

Reliability and Resiliency Definitions for Smart Microgrids Based on Utility Theory

2017-03-28
2017-01-0205
Reliability and resiliency (R&R) definitions differ depending on the system under consideration. Generally, each engineering sector defines relevant R&R metrics pertinent to their system. While this can impede cross-disciplinary engineering projects as well as research, it is a necessary strategy to capture all the relevant system characteristics. This paper highlights the difficulties associated with defining performance of such systems while using smart microgrids as an example. Further, it develops metrics and definitions that are useful in assessing their performance, based on utility theory. A microgrid must not only anticipate load conditions but also tolerate partial failures and remain optimally operating. Many of these failures happen infrequently but unexpectedly and therefore are hard to plan for. We discuss real life failure scenarios and show how the proposed definitions and metrics are beneficial.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Journal Article

Time-Dependent Reliability Analysis Using a Modified Composite Limit State Approach

2017-03-28
2017-01-0206
Recent developments in time-dependent reliability have introduced the concept of a composite limit state. The composite limit state method can be used to calculate the time-dependent probability of failure for dynamic systems with limit-state functions of input random variables, input random processes and explicit in time. The probability of failure can be calculated exactly using the composite limit state if the instantaneous limit states are linear, forming an open or close polytope, and are functions of only two random variables. In this work, the restriction on the number of random variables is lifted. The proposed algorithm is accurate and efficient for linear instantaneous limit state functions of any number of random variables. An example on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates the accuracy of the proposed general composite limit state approach.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Journal Article

A New Metamodeling Approach for Time-Dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

2014-04-01
2014-01-0717
We propose a new metamodeling method to characterize the output (response) random process of a dynamic system with random parameters, excited by input random processes. The metamodel can be then used to efficiently estimate the time-dependent reliability of a dynamic system using analytical or simulation-based methods. The metamodel is constructed by decomposing the input random processes using principal components or wavelets and then using a few simulations to estimate the distributions of the decomposition coefficients. A similar decomposition is also performed on the output random process. A kriging model is then established between the input and output decomposition coefficients and subsequently used to quantify the output random process corresponding to a realization of the input random parameters and random processes. What distinguishes our approach from others in metamodeling is that the system input is not deterministic but random.
Journal Article

Flexible Design and Operation of a Smart Charging Microgrid

2014-04-01
2014-01-0716
The reliability theory of repairable systems is vastly different from that of non-repairable systems. The authors have recently proposed a ‘decision-based’ framework to design and maintain repairable systems for optimal performance and reliability using a set of metrics such as minimum failure free period, number of failures in planning horizon (lifecycle), and cost. The optimal solution includes the initial design, the system maintenance throughout the planning horizon, and the protocol to operate the system. In this work, we extend this idea by incorporating flexibility and demonstrate our approach using a smart charging electric microgrid architecture. The flexibility is realized by allowing the architecture to change with time. Our approach “learns” the working characteristics of the microgrid. We use actual load and supply data over a short time to quantify the load and supply random processes and also establish the correlation between them.
Technical Paper

A Cost-Driven Method for Design Optimization Using Validated Local Domains

2013-04-08
2013-01-1385
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, we have previously proposed an approach where design optimization and model validation, are concurrently performed using a sequential approach with variable-size local domains. We used test data and statistical bootstrap methods to size each local domain where the prediction model is considered validated and where design optimization is performed. The method proceeds iteratively until the optimum design is obtained. This method however, requires test data to be available in each local domain along the optimization path. In this paper, we refine our methodology by using polynomial regression to predict the size and shape of a local domain at some steps along the optimization process without using test data.
Journal Article

Optimal Preventive Maintenance Schedule Based on Lifecycle Cost and Time-Dependent Reliability

2012-04-16
2012-01-0070
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. It also affects the scheduling for preventive maintenance. Reliability usually degrades with time increasing therefore, the lifecycle cost due to more frequent failures which result in increased warranty costs, costly repairs and loss of market share. In a lifecycle cost based design, we must account for product quality and preventive maintenance using time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. For a repairable system, preventive maintenance is scheduled to avoid failures, unnecessary production loss and safety violations. This article proposes a methodology to obtain the optimal scheduling for preventive maintenance using time-dependent reliability principles.
Technical Paper

System Failure Identification using Linear Algebra: Application to Cost-Reliability Tradeoffs under Uncertain Preferences

2012-04-16
2012-01-0914
Reaching a system level reliability target is an inverse problem. Component level reliabilities are determined for a required system level reliability. Because this inverse problem does not have a unique solution, one approach is to tradeoff system reliability with cost and to allow the designer to select a design with a target system reliability, using his/her preferences. In this case, the component reliabilities are readily available from the calculation of the reliability-cost tradeoff. To arrive at the set of solutions to be traded off, one encounters two problems. First, the system reliability calculation is based on repeated system simulations where each system state, indicating which components work and which have failed, is tested to determine if it causes system failure, and second, the task of eliciting and encoding the decision maker's preferences is extremely difficult because of uncertainty in modeling the decision maker's preferences.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Reliability Prediction for the HMMWV Suspension System

2011-04-12
2011-01-0726
This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based approach to the reliability problem was implemented.
X