Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

Experimental and Computational Study of Unsteady Wake Flow Behind a Bluff Body with a Drag Reduction Device

2001-03-05
2001-01-1042
Simple devices have been shown to be capable of tailoring the flow field around a vehicle and reducing aerodynamic drag. An experimental and computational investigation of a drag reduction device for bluff bodies in ground proximity has been conducted. The main goal of the research is to gain a better understanding of the drag reduction mechanisms in bluff-body square-back geometries. In principle, the device modifies the flow field behind the test model by disturbing the shear layer. As a consequence, the closure of the wake is altered and reductions in aerodynamic drag of more than 20 percent are observed. We report unsteady base pressure, hot-wire velocity fluctuations and Particle Image Velocimetry (PIV) measurements of the near wake of the two models (baseline and the modified models). In addition, the flows around the two configurations are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations in conjunction with the V2F turbulence model.
X