Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Application of Empirical Asperity Contact Model to High Fidelity Wet Clutch System Simulations

2019-04-02
2019-01-1301
Wet clutches are complex hydrodynamic devices used in both conventional and electrified drivetrain systems. They couple or de-couple powertrain components for applications such as automatic shifting, engine disconnect and torque vectoring. Clutch engagement behaviors vary greatly, depending on design parameters and operating conditions. Because of their direct impact on vehicle drivability and fuel economy, a predictive CAE model is desired for enabling analytical design verification processes. During engagement, a wet clutch transmits torque through viscous shear and asperity contact. A conventional Coulomb’s model, which is routinely utilized in shift simulations, is inadequate to capture non-linear hydrodynamic effects for higher fidelity analysis. Extensive research has been conducted over the years to derive hydrodynamic torque transfer models based on 1D squeeze film or 3D CFD. They are typically coupled with an elastic asperity contact model for mechanical torque transfer.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

Equivalent Consumption Minimization Strategy for a Power Split Supercharger

2019-04-02
2019-01-1207
Low voltage hybridization (<60 V) supports engine start/stop, regenerative braking, and constrained torque assist/regeneration at a low cost. This work studies the potential benefits of a novel hybrid system, called a power split supercharger (PSS). A 9 kW motor is shared between boosting the engine or providing hybrid functionalities, allowing it to couple with a small engine and still support good acceleration. However, the PSS operation is limited to only one of the parallel hybrid or boosting modes at each time instance. In this work an equivalent consumption minimization strategy (ECMS) is developed to select the PSS mode and the motor torque during hybrid mode. The PSS operation is simulated over standard EPA drive cycles with an engine mean value model that captures detailed air path and PSS dynamics.
Technical Paper

Optimization of a Diesel Engine with Variable Exhaust Valve Phasing for Fast SCR System Warm-Up

2019-04-02
2019-01-0584
Early exhaust valve opening (eEVO) increases the exhaust gas temperature by faster termination of the power stroke and is considered as a potential warm up strategy for diesel engines aftertreatment thermal management. In this study, first, it is shown that when eEVO is applied, the engine main variables such as the boost pressure, exhaust gas recirculation (EGR) and injection (timing and quantity) must be re-calibrated to develop the required torque, avoid exceeding the exhaust temperature limits and keep the air fuel ratio sufficiently high. Then, a two-step procedure is presented to optimize the engine operation after the eEVO system is introduced, using a validated diesel engine model. In the first step, the engine variables are optimized at a constant eEVO shift. In the second step, optimal eEVO trajectories are calculated using Dynamic Programming (DP) for a transient test cycle.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Study of Effects of Thermal Insulation Techniques on a Catalytic Converter for Reducing Cold Start Emissions

2018-04-03
2018-01-1431
Previous work done at the University of Michigan shows the capability of the vacuum-insulated catalytic converter (VICC) to retain heat during soak and the resulting benefits in reducing cold start emissions. This paper provides an improved version of the design which overcomes some of the shortcomings of the previous model and further improves the applicability and benefits of VICC. Also, newer materials have been evaluated and their effects on heat retention and emissions have studied using the 1-D after treatment model. Cold start emissions constitute around 60% to 80% of all the hydrocarbon and CO emissions in present day vehicles. The time taken to achieve the catalyst light-off temperature in a three-way catalytic converter significantly affects the emissions and fuel efficiency. The current work aims at developing a method to retain heat in catalytic converter, thus avoiding the need for light-off and reducing cold start emissions effectively.
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

Development of a Stationary Axle Efficiency Test Stand and Methodology for Identifying Fuel Efficient Gear Oils for Military Applications - Part 1

2017-03-28
2017-01-0889
For existing fleets such as the U.S. military ground vehicle fleet, there are few ways to reduce vehicle fuel consumption that don’t involve expensive retrofitting. Replacing standard lubricants with those that can achieve higher vehicle efficiencies is one practical and inexpensive way to improve fleet fuel efficiency. In an effort to identify axle gear lubricants that can reduce the fuel consumption of its fleet, the U.S. Army is developing a stationary axle efficiency test stand and procedure. In order to develop this capability, on-track vehicle fuel consumption testing was completed using light, medium, and heavy tactical wheeled vehicles following a modified SAE J1321 type test procedure. Tested lubricants included a baseline SAE 80W-90, a fuel efficient SAE 75W-90, and a fuel efficient SAE 75W-140. Vehicle testing resulted in reductions in fuel consumption of up to 2%.
Technical Paper

Modelling and Control of Engine Torque for Short-Circuit Flow and EGR Evacuation

2017-03-28
2017-01-0606
Low-Pressure Exhaust Gas Recirculation (LP-EGR) has been shown to be an effective means of improving fuel economy and suppressing knock in downsized, boosted, spark ignition engines. LP-EGR is particularly beneficial at low-speed, high-load conditions, but can lead to combustion instability at lower loads. The transport delays inherent in LP-EGR systems slow the reduction of intake manifold EGR concentrations during tip-out events, which may lead to excessive EGR concentrations at low load. This paper explores leveraging Variable Valve Timing (VVT) as a means of improving the rate of reduction of intake manifold EGR concentration prior to tip-out. At higher boost levels, high valve overlap may result in intake manifold gas passing directly to the exhaust manifold. This short-circuiting behaviour could potentially improve EGR evacuation rates.
Technical Paper

Effects of Differential Pressure Sensor Gauge-Lines and Measurement Accuracy on Low Pressure EGR Estimation Error in SI Engines

2017-03-28
2017-01-0531
Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
Technical Paper

Emissions Modeling of a Light-Duty Diesel Engine for Model-Based Control Design Using Multi-Layer Perceptron Neural Networks

2017-03-28
2017-01-0601
The development of advanced model-based engine control strategies, such as economic model predictive control (eMPC) for diesel engine fuel economy and emission optimization, requires accurate and low-complexity models for controller design validation. This paper presents the NOx and smoke emissions modeling of a light duty diesel engine equipped with a variable geometry turbocharger (VGT) and a high pressure exhaust gas recirculation (EGR) system. Such emission models can be integrated with an existing air path model into a complete engine mean value model (MVM), which can predict engine behavior at different operating conditions for controller design and validation before physical engine tests. The NOx and smoke emission models adopt an artificial neural network (ANN) approach with Multi-Layer Perceptron (MLP) architectures. The networks are trained and validated using experimental data collected from engine bench tests.
X