Refine Your Search



Search Results

Technical Paper

Structural Vibration of an Elastically Supported Plate due to Excitation of a Turbulent Boundary Layer

High-Reynolds number turbulent boundary layers are an important source for inducing structural vibration. Small geometric features of a structure can generate significant turbulence that result in structural vibration. In this work we develop a new method to couple a high-fidelity fluid solver with a dynamic hybrid analytical-numerical formulation for the structure. The fluid solver uses the Large-Eddy Simulation closure for the unresolved turbulence. Specifically, a local and dynamic one-equation eddy viscosity model is employed. The fluid pressure fluctuation on the structure is mapped to the dynamic structural model. The plate where the flow excitation is applied is considered as part of a larger structure. A hybrid approach based on the Component Mode Synthesis (CMS) is used for developing the new hybrid formulation. The dynamic behavior of the plate which is excited by the flow is modeled using finite elements.
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Technical Paper

Influence of Early and Late Fuel Injection on Air Flow Structure and Kinetic Energy in an Optical SIDI Engine

The turbulent in-cylinder air flow and the unsteady high-pressure fuel injection lead to a highly transient air fuel mixing process in spark-ignition direct-injection (SIDI) engines, which is the leading cause for combustion cycle-to-cycle variation (CCV) and requires further investigation. In this study, crank-angle resolution particle image velocimetry (PIV) was employed to simultaneously measure the air flow and fuel spray structure at 1300 rpm in an optically accessible single-cylinder SIDI engine. The measurement was conducted at the center tumble plane of the four-valve pent-roof engine, bisecting the spark plug and fuel injector. 84 consecutive cycles were recorded for three engine conditions, i.e. (1) none-fueled motored condition, (2) homogeneous-charge mode with start of injection (SOI) during intake (50 crank-angle degree (CAD) after top dead center exhaust, aTDCexh), and (3) stratified-charge mode with SOI during mid compression (270 aTDCexh).
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
Technical Paper

Effects of Fuel Injection Events of Ethanol and Gasoline Blends on Boosted Direct-Injection Engine Performance

Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motor octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar.
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Journal Article

Effect of Syngas (H2/CO) on SI Engine Knock under Boosted EGR and Lean Conditions

Syngas (synthesis gas) aided combustion from various fuel reforming strategies is of increasing interest in boosted lean burn SI engines due to its impact on dilution tolerance and knock resistance. Due to the interest in reformed fuels, more concrete understanding of how to leverage syngas supplementation under various lean conditions is essential to optimize engine performance and derive the most benefit from the availability of syngas in the combustion process. While the impact of syngas supplementation on combustion stability has been studied adequately, detailed understanding of the impact of syngas on knocking is still limited. Hence, this study investigates the effect of syngas (H2/CO) addition on knock tendency under boosted EGR (Exhaust Gas Recirculation) and air diluted conditions. Syngas amount is controlled on an energy basis from 0% to 15% to compare the difference between EGR and air dilution.
Technical Paper

Effects of Differential Pressure Sensor Gauge-Lines and Measurement Accuracy on Low Pressure EGR Estimation Error in SI Engines

Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Technical Paper

Literature Survey of Water Injection Benefits on Boosted Spark Ignited Engines

The automotive industry has been witnessing a major shift towards downsized boosted direct injection engines due to diminishing petroleum reserves and increasingly stringent emission targets. Boosted engines operate at a high mean effective pressure (MEP), resulting in higher in-cylinder pressures and temperatures, effectively leading to increased possibility of abnormal combustion events like knock and pre-ignition. Therefore, the compression ratio and boost pressure in modern engines are restricted, which in-turn limits the engine efficiency and power. To mitigate conditions where the engine is prone to knocking, the engine control system uses spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Several researchers have advocated water injection as an approach to replace or supplement existing knock mitigation techniques.
Technical Paper

Modelling and Control of Engine Torque for Short-Circuit Flow and EGR Evacuation

Low-Pressure Exhaust Gas Recirculation (LP-EGR) has been shown to be an effective means of improving fuel economy and suppressing knock in downsized, boosted, spark ignition engines. LP-EGR is particularly beneficial at low-speed, high-load conditions, but can lead to combustion instability at lower loads. The transport delays inherent in LP-EGR systems slow the reduction of intake manifold EGR concentrations during tip-out events, which may lead to excessive EGR concentrations at low load. This paper explores leveraging Variable Valve Timing (VVT) as a means of improving the rate of reduction of intake manifold EGR concentration prior to tip-out. At higher boost levels, high valve overlap may result in intake manifold gas passing directly to the exhaust manifold. This short-circuiting behaviour could potentially improve EGR evacuation rates.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Journal Article

Hybrid Electric Vehicle Powertrain and Control Strategy Optimization to Maximize the Synergy with a Gasoline HCCI Engine

This simulation study explores the potential synergy between the HCCI engine system and three hybrid electric vehicle (HEV) configurations, and proposes the supervisory control strategy that maximizes the benefits of combining these two technologies. HCCI operation significantly improves fuel efficiency at part load, while hybridization aims to reduce low load/low speed operation. Therefore, a key question arises: are the effects of these two technologies additive or overlapping? The HEV configurations include two parallel hybrids with varying degrees of electrification, e.g. with a 5kW integrated starter/motor (“Mild”) and with a 10 kW electric machine (“Medium”), and a power-split hybrid. The engine is a dual-mode, SI-HCCI system and the engine map reflects the impact of HCCI on brake specific fuel consumption.
Technical Paper

Computational Investigation of the Stratification Effects on DI/HCCI Engine Combustion at Low Load Conditions

A numerical study has been conducted to investigate possible extension of the low load limit of the HCCI operating range by charge stratification using direct injection. A wide range of SOI timings at a low load HCCI engine operating condition were numerically examined to investigate the effect of DI. A multidimensional CFD code KIVA3v with a turbulent combustion model based on a modified flamelet approach was used for the numerical study. The CFD code was validated against experimental data by comparing pressure traces at different SOI’s. A parametric study on the effect of SOI on combustion has been carried out using the validated code. Two parameters, the combustion efficiency and CO emissions, were chosen to examine the effect of SOI on combustion, which showed good agreement between numerical results and experiments. Analysis of the in-cylinder flow field was carried out to identify the source of CO emissions at various SOI’s.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Cycle-Resolved Investigation of In-Cylinder and Exhaust NO in a Spray-Guided Gasoline Direct-Injection Engine: Effect of Intake Temperature and Simulated Exhaust Gas Recirculation

The formation of NO was investigated in a spray-guided spark-ignition direct-injection gasoline engine. The influence of variations in intake air temperature and simulated exhaust gas recirculation was examined in an optical single-cylinder engine, fueled with iso-octane. Cycle-resolved simultaneous measurements of OH-chemiluminescence, NO laser induced fluorescence, and fast NO exhaust gas sampling allowed a detailed view of the formation process of NO in this engine. Overall, it was found that cycle-resolved information is needed to explain the differences found between operating conditions, since the initial high stratification of fuel leads to large spatial gradients in the NO concentration. Averaged in-cylinder NO distributions do not adequately reflect the formation process rather than show a smoothed distribution that may even be counter-intuitive based on averaged chemiluminescence data.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

Detection of Ice on Aircraft Tail Surfaces

A method is presented here that detects aircraft tail surface icing that might normally be unobserved by the flight crew. Such icing can be detected through the action of highly computationally efficient signal processing of existing sensor signals using a so-called failure detection filter (FDF). The FDF creates a unique output signature permitting relatively early detection of tail surface icing. The FDF incorporates a stable state estimator from which the icing signature is created. This estimator is robust to analytical modeling errors or uncertainties, and to process noise (e.g. turbulence). Excellent performance of the method is demonstrated via simulation.