Refine Your Search

Topic

Search Results

Technical Paper

Comfortable Head and Neck Postures in Reclined Seating for Use in Automobile Head Rest Design

2019-04-02
2019-01-0408
Little information is available on passenger preferences for posture and support in highly reclined seat configurations. To address this gap, a laboratory study was conducted with 24 adult passengers at seat back angles from 23 to 53 degrees. Passenger preferences for head and neck posture with and without head support were recorded. This paper presents the characteristics of the passengers’ preferred head support with respect to thorax, head, and neck posture.
Technical Paper

In-Vehicle Occupant Head Tracking Using aLow-Cost Depth Camera

2018-04-03
2018-01-1172
Analyzing dynamic postures of vehicle occupants in various situations is valuable for improving occupant accommodation and safety. Accurate tracking of an occupant’s head is of particular importance because the head has a large range of motion, controls gaze, and may require special protection in dynamic events including crashes. Previous vehicle occupant posture studies have primarily used marker-based optical motion capture systems or multiple video cameras for tracking facial features or markers on the head. However, the former approach has limitations for collecting on-road data, and the latter is limited by requiring intensive manual postprocessing to obtain suitable accuracy. This paper presents an automated on-road head tracking method using a single Microsoft Kinect V2 sensor, which uses a time-of-flight measurement principle to obtain a 3D point cloud representing objects in the scene at approximately 30 Hz.
Technical Paper

Design Environment for Nonlinear Model Predictive Control

2016-04-05
2016-01-0627
Model Predictive Control (MPC) design methods are becoming popular among automotive control researchers because they explicitly address an important challenge faced by today’s control designers: How does one realize the full performance potential of complex multi-input, multi-output automotive systems while satisfying critical output, state and actuator constraints? Nonlinear MPC (NMPC) offers the potential to further improve performance and streamline the development for those systems in which the dynamics are strongly nonlinear. These benefits are achieved in the MPC framework by using an on-line model of the controlled system to generate the control sequence that is the solution of a constrained optimization problem over a receding horizon.
Journal Article

In-Vehicle Driver State Detection Using TIP-II

2014-04-01
2014-01-0444
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
Technical Paper

The Quantification of Liver Anatomical Changes and Assessment of Occupant Liver Injury Patterns

2013-11-11
2013-22-0011
Liver injuries can be significant in vehicle crashes. In this study, the liver anatomy was quantified in both adult and pediatric populations as a function of gender and age. Five anatomical liver measurements were determined using CT scans of 260 normal livers. These measurements include the area and volume, and the length, width, and girth of the liver (IRB HUM00041441). To characterize geometrical shape, an inscribed sphere and circumscribed ellipsoid were fitted on the measurements. In the pediatric population the liver area and volume continuously increased with age. When normalized by patient weight, volume measurements show a decrease in volume with age, suggesting that the liver occupies a smaller proportion of the body with age. In the adult population, liver measurements varied with gender. The superior and inferior locations of the liver were also recorded with respect to the spine. The lower portion was at the L3 in small children and at L2 as children approached puberty.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
Journal Article

Scheduling of Hand Movements in Bimanual Tasks

2008-06-17
2008-01-1916
This study investigates the organization of upper body coordination in tasks involving complex visual and manual demands. In the past, bimanual coordination has been approached in the context of symmetric or asymmetric interactions of the two hands. But routine behavior associated with work tasks requires synchronization in time and space of multiple components across multiple concurrent actions. Hence the problem of upper body coordination involves a combination of both symmetric and asymmetric modes of interaction, with a dynamic switching between the two. Although current models may explain the two modes of interaction individually, none of the existing models account for an integration of the two modes from the perspective of task performance. A pilot study was conducted in which subjects performed assembly tasks involving object transfers and manipulations with varying levels of visual and manual demands and performance constraints, such as speed and precision.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Estimation of Body Links Transfer Functions in Vehicle Vibration Environment

2007-06-12
2007-01-2484
Exposure of a driver to vehicle vibration is known to disrupt manual performances, and more specifically affect the speed and accuracy of reaching tasks associated with vehicle operation. The effects of whole body vibration (WBV) can be analyzed as a function of the vibration characteristics of each body link. This information can then be used to identify movement strategies and predict biodynamic responses. Conceptual principles derived from the understanding of human behavior in a vibratory environment can then be used for the design of controls or interfaces adapted for vehicle operation in this context. The transfer functions of individual upper body links were estimated to investigate their biodynamic properties as a function of vehicle vibration frequency and spatial location of targets to be reached. In the present study, fourteen seated participants performed pointing movements to eight targets distributed in the right hemisphere.
Technical Paper

Intrusion in Side Impact Crashes

2007-04-16
2007-01-0678
Half of the car occupant deaths involved in two-vehicle crashes results from side impact collisions. In an attempt to better understand the role that vehicle mass plays in crashes and injury causation, detailed information from the NASS CDS database on injury source was distributed in three classes: contact with intrusion, contact without intrusion, and restrained acceleration or non-contact. We compared these distributions for belted drivers in side verses frontal crashes. When looking at the type of striking, or bullet, vehicle in near-side impacts, we found that intrusion injuries are more prevalent in cars hit by SUVs and pickups than by other cars. We also looked at the body region injured verses the type of striking vehicle and found head injuries to be slightly more prevalent when the striking vehicle is an SUV or pick-up. Data from the University of Michigan CIREN case studies on side impacts are presented and are consistent with the NASS CDS data.
Technical Paper

Improved Positioning Procedures for 6YO and 10YO ATDs Based on Child Occupant Postures

2006-11-06
2006-22-0014
The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children.
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

2005-06-14
2005-01-2681
For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Technical Paper

Muscle Forces and Fatigue in a Digital Human Environment

2005-06-14
2005-01-2712
Since muscles act to translate an electrical impulse from the central nervous system into motion, it is essential to have a suitable mathematical model for muscles and groups of muscles for a virtual soldier environment. This paper presents a methodology in which the muscle contraction is broken down into three distinct physiological processes: calcium release and re-absorption by the sarcoplasmic reticulum, the rate at which calcium binds and unbinds to troponin, and the generation of force due to cross-bridge cycling and the elasticity of the muscle fibers. These processes have been successfully modeled by Ding and Wexler as a system of coupled differential and algebraic equations. These equations give the calcium-time history and the force time history of the muscle. By varying the electrical stimulation rates, the muscles can produce forces of varying magnitude and duration over which the force can be maintained.
Technical Paper

Balance Maintenance during Seated Reaches of People with Spinal Cord Injury

2004-06-15
2004-01-2138
In many task analyses using digital human figure models, only the terminal or apparently most stressful posture is analyzed. For reaches from a seated position, this is generally the posture with the hand or hands at the target. However, depending on the characteristics of the tasks and the people performing them, analyzing only the terminal posture could be misleading. This possibility was examined using data from a study of the reaching behavior of people with spinal cord injury. Participants performed two-handed forward reaching tasks. These reaches were to three targets located in the sagittal plane. The terminal postures did not differ significantly between those with spinal cord injury and those without. However, motion analysis demonstrated that they employed distinct strategies, particularly in the initial phase of motion.
Technical Paper

Modeling Head and Hand Orientation during Motion using Quaternions

2004-06-15
2004-01-2179
Some body parts, such as the head and the hand, change their orientation during motion. Orientation can be conveniently and elegantly represented using quaternions. The method has several advantages over Euler angles in that the problem of gimbal lock is avoided and that the orientation is represented by a single mathematical object rather than a collection of angles that can be redefined in various arbitrary ways. The use of quaternions has been popular in animation applications for some time, especially for interpolating motions. We will introduce some new applications involving statistical methods for quaternions that will allow us to present meaningful averages of repeated motions involving orientations and make regression predictions of orientation. For example, we can model how the glancing behavior of the head changes according to the target of the reach and other factors.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

2003-06-17
2003-01-2216
Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

Data-Based Motion Prediction

2003-06-17
2003-01-2229
A complete scheme for motion prediction based on motion capture data is presented. The scheme rests on three main components: a special posture representation, a diverse motion capture database and prediction method. Most prior motion prediction schemes have been based on posture representations based on well-known local or global angles. Difficulties have arisen when trying to satisfy constraints, such as placing a hand on a target or scaling the posture for a subject of different stature. Inverse kinematic methods based on such angles require optimization that become increasingly complex and computationally intensive for longer linkages. A different representation called stretch pivot coordinates is presented that avoids these difficulties. The representation allows for easy rescaling for stature and other linkage length variations and satisfaction of endpoint constraints, all without optimization allowing for rapid real time use.
X