Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy

2001-03-05
2001-01-0425
The need for improved understanding of new magnesium alloys for the automotive industry continues to grow as the application for these lightweight alloys expands to more demanding environments, particularly in drivetrain components. Their use at elevated temperatures, such as in transmission cases, presents a challenge because magnesium alloys generally have lower creep resistance than aluminum alloys currently employed for such applications. In this study, a new die cast magnesium alloy, MEZ, containing rare earth (RE) elements and zinc as principal alloying constituents, was examined for its bolt-load retention (BLR) properties. Preloads varied from 14 to 28 kN and test temperatures ranged from 125 to 175°C. At all test temperatures and preloads, MEZ retained the greatest fraction of the initial imposed preload when compared to the magnesium alloys AZ91D, AE42, AM50, and the AM50+Ca series alloys.
Technical Paper

Finite Element Modeling of Bolt Load Retention of Die-Cast Magnesium

2000-03-06
2000-01-1121
The use of die cast magnesium for automobile transmission cases offers promise for reducing weight and improving fuel economy. However, the inferior creep resistance of magnesium alloys at high temperature is of concern since transmission cases are typically assembled and joined by pre-loaded bolts. The stress relaxation of the material could thus adversely impact the sealing of the joint. One means of assessing the structural integrity of magnesium transmission cases is modeling the bolted joint, the topic of this paper. The commercial finite element code, ABAQUS, was used to simulate a well characterized bolt joint sample. The geometry was simulated with axi-symmetric elements with the exact geometry of a M10 screw. Frictional contact between the male and female parts is modeled by using interface elements. Material creep is described by a time hardening power law whose parameters are fit to experimental creep test data.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
Technical Paper

A Network-Based Expert System for Comparative Analysis of Pulley Assembly Methods

1990-02-01
900818
The pulleys employed in automotive accessory drive systems very often consist of a two piece assembly; a multitude of fastening techniques are used in completing the assembly. There are numerous assembly methods and a variety of distinct pulley configurations dictated by the various automobile manufacturers in accordance with individual accessory drive needs. An expert system is being developed to evaluate the merit of multiple assembly alternatives for a specific pulley application. The expert system provides a consistent evaluation tool for assembly alternatives, balancing the influence of product cost, strength and quality considerations. The knowledge-based system is implemented in an expert system shell called AGNESS (A Generalized Network-based Expert System Shell). The expert system judges the acceptability of various pulley assembly techniques, assigning a high “merit value” to the better designs and proportionately lower values to less desirable designs.
X